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1.0	 INTRODUCTION

This Final Report summarizes the system implementation studies of

the Ku-band radar/communication system and S-band communication system.

1.1	 Statement of Work

1.1.1	 Objectives

The overall objective of the effort has been to analyze the inter-

faces between the Ku-band system and the TDRSS, between the S-band system

and the TDRSS, GSTDN and SGLS networks, and between the S-band payload

communication equipment and the other Orbiter avionic equipment., The

principal activities to accomplish these objectives have been:

(1) Performance analysis of the payload narrowband bent-pipe

through the Ku-band communication system.

(2) Performance evaluation of the TDRSS user constraints placed

on the S-band and Ku-band communication systems.

^	 (3) Assessment of the Shuttle-unique S-band TDRSS ground station
i

false lock susceptibility. j

(4) Development of procedure to make S-band antenna measurements

during orbital flight.

(5) Development of procedure to make RFI measurements during

orbital flight to assess the performance degradation to the TDRSS S-band

communication link.

(6) Analysis of the payload interface integration problem areas. 	 '?

1.1.2	 Stipulated Tasks

The contract Statement of Work calls out the following tasks:

"Task #1 - Evaluation of Ku-band System Implementation - The
contractor shall evaluate the Orbiter Ku-band system imple-
mentation and analyze issues regarding the Ku-band system
interfaces with TDRSS. From this evaluation the contractor
shall make recommendations concerning the Ku-band system
implementation alternatives and design changes to resolve

j	 interface problems

Task #2 - Evaluation of S-band System Implementation - The
contractor shall evaluate the Orbiter S-band system imple-
mentation and analyze issues regarding the S-band system.
interfaces with the Vt'RSS, GSTDN, and SGLS networks. FromC,

	

	
this evaluation the contractor shall make recommendations	 fl?
concerning S-band system implementation alternatives and
design changes to resolve interface problems

te
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Task #3 - Payload Interface Integration - The contractor shall
perform analyses of technical issues related to payload inter-
face integration for the payload S-band communications inter-
faces including the payload interface with the Payload Data
Interleaves. Recommendations concerning resolution of problem
areas associated with the Payload interrogator, Payload signal
processor, and the payload interleaver and the associated
interfaces with payloads, shall be made."

The activities performed to accomplish these tasks are noted in

the previous section. Activities (1) and (2) were in response to Task 1,

activities (3) through (5) were in response to Task 2, and activity (6)

was in response to Task 3.

	

1.1.3	 General Approach

The general approach has been to work with cognizant NASA per-

sonnel and individuals at the principal prime contractors (Rockwell

International for the Orbiter and Western Union for TDRSS) and subcon-

tractors (TRW., Hughes Aircraft Company, Harris, and Motorola) to ascer-

tain directions taken. A vital part of this activity has involved

Axiomatix attendance and participation in the regular monthly program

reviews and all special meetings. These latter gatherings usually

involved detailed discussions on design and specification issues. Apart

from attendance at meetings, monthly reviews, and analysis activities,

Axiomatix also acted in a technical consulting role to NASA.

Each month, Axiomatix prepared a Monthly Technical Report which

contained a brief summary of all relevant technical activity.Many of

the Axiomatix in-process analysis activities and results were appended

to these reports.

	

1.1.4	 Continuity With Previous Work

The activity on the Ku-band and S-band communication systems was

a continuation of contracts NAS 9-13467 and NAS 9-15240A, both of which

were entitled "Integrated Source and Channel Encoded Digital Communication

System Design Study." Also, the activity on NAS 9-13467 and NAS 9-15240A

was related to analyses performed to optimize the S-band and Ku-band com-

munication equipment carried nut under contract NAS 9-14614,- "Study to

Investigate and Evaluate Means of Optimizing the Communication Functions.
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1.1.5	 Relationship to Parallel Work

The work performed under the subject contract was strongly inter-

related to parallel work. Contract NAS 9-15514A, "Shuttle Orbiter

S-Band Communication Equipment Design Evaluation," provided support to

critique the design and assess the performance of the individual Orbiter

S-band communication equipment. Contract NAS 9-15515A, "Shuttle Orbiter

Ku-Band Radar/Communications System Design Evaluation," provided support

to critique the design and assess the performance of the Orbiter Ku-band

radar/communication equipment. In terms of the payload interface inte-

gration task, contract NAS 9-154096, "Orbiter/IUS Communications Hardware

Evaluation," provided support to evaluate the DOD and NASA Inertial Upper

Stage (IUS) communication system design, hardware specifications, and

interfaces to determine their compatibility with the OOrbiter payload

communication equipment and the Orbiter operational equipment. Also,

contract NAS 9-15240D is the systems contract to identify, evaluate, and

make recommendations concerning the functions and interfaces of those

Orbiter avionic subsystems which are dedicated to, or play some part in,

handling communication signals (telemetry and command) to and from the

payloads (spacecraft) that will be carried into orbit by the Shuttle.

1.2	 Scope of the Final Report

There are six sections following which address the six major

activities performed during this study to accomplish the three stipulated

tasks.

section 2.0 describes the narrowband bent-pipe performance and

recommends a simple modification for the ground equipment to correct a

loss-of-lock tracking problem which has been experimentally observed.

The analysis using realistic system parameters determined the cause of
the problem and, after exploring various possible alternatives, subse-
quently resulted in the recommended fix which consists of widening the

bandwidth of the arm filters in the 8.5 MHz Costas loop on the ground

Section 3.0 evaluates the Ku-band TDRSS user constraints and

compares them with the HAC specifications. The cumulative degradation

effects are analyzed and summarized in tabular form for both cases.

Section 4.0 presents the analysis of the false lock susceptibility

of the Shuttle-unique S-band demodulator proposed by Motorola. Because

3r
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of the false lock susceptibility found for the hard-limited loop pro-

posed by Motorola, Axiomatix believes the implementation should be

reviewed. At the moment it seems that, in the loop proposed by Motorola,

there is little impact for not hard-limiting the in-phase channel. There-

fore, a better implementation would be to eliminate the hard-limiter,

which would leave the first false lock point outside the acquisition

sweep range.

Section 5.0 proposes a method of measuring the Shuttle S-band

antenna patterns in orbit by statistical means, taking into consideration 	
r

such factors as Shuttle orientations, distances, and ground s-ation

antenna calibrations. A more realistic antenna pattern measurement will

result, since the influences of adjacent Shuttle appendages, which are

difficult to simulate using mock-ups, will be directly measured under

actual orbital conditions.

Section 6.0 outlines a procedure to evaluate the effects of RFI

on the TDRSS S-band communication system. Since orbital trajectory anal-

yses indicated that the exposure to RFI from East Germany and Madrid would

be less than a few minutes at most, it is recommended that a .portable

S-band ground transmitter be positioned such that RFI effects can be

adequately studied under controlled conditions.

Finally, Section 7.0 describes the Orbiter avionics equipment

serving attached and detached payloads. The interrelationships and

interfaces between the Orbiter avionic equipment are delineated. Also,

the capabilities and requirements of each Orbiter avionic subsystem

involved with the payload signal handling functions are presented. After

reviewing the interfaces between the payload equipment and the Orbiter

avionic equipment, a number of areas of concern were found. The inter-

faces that still require specification modifications are between the

Payload Interrogator and the Payload Signal Processor, between the Pay-

load Interrogator and the Ku-band Signal Frocessor, and between the DOD

Communication Interface Unit and the Orbiter MDM. The details of these

areas of concern are presented in Section 7.4..



r

5

	

2.0	 NARROWBAND BENT-PIPE PERFORMANCE

The performance of the narrowband bent-pipe signal processor is

developed. Tests conducted at the NASA-JSC laboratories show that, at

certain sets of system parameters, the 8.5 MHz Costas loop on the ground

would lose lock. The results of the analysis of this section predict

under what conditions loss of lock can be expected.

Heuristically, a Costas loop will not track a balanced QPSK signal.

Even though the power split in the bent-pipe mode is 4:1, when the bandwidth

of the bent-pipe signal gets too large, the arms of the Costas loop both

see the same amount of power. Therefore, in the eyes of the Costas loop,

it sees a balanced QPSK signal, and tracking capability is lost.

The results of the analysis presented herein substantiate and

predict the loss of lock phenomena observed in the NASA-JSC laboratory

tests. With the aid of the analysis, several fixes are proposed to allevi-

ate this problem. All of the fixes have disadvantages, except one which

we recommend.

Specifically, we recommend that the bandwidth of the arm filters

in the 8.5 MHz Costas loop on the ground be widened to a two-sided noise

bandwidth of BN = 3.8 MHz (a 3 dB cutoff frequency of 1.2 MHz). This

alteration requires no changes on-board the Orbiter and no additional

hardware on the ground, only filter component changes. In addition, in

terms of performance, there is a slight increase in squaring loss in the

RMS phase error which is negligible. Finally, none of the other fixes

considered have any advantages which this fix does not have. Therefore,

we recommend this simple alteration to alleviate the loss of lock problem

of the 8.5 MHz Costas loop in the narrowband bent-pipe mode.

	

2.1	 Problem Statement of Narrowband Bent-Pipe Performance

The signal processing for the narrowband bent-pipe mode of opera-

tion of the Ku-band communication system is described. This signal processing

for the bent-pipe demodulation problem is presently in the development stage.

In order to obtain preliminary design information, a test configuration

was assembled at NASA-JSC. A block diagram of this test setup, which

simulates the hardware being built for the Ku-band system which pertains

to the bent-pipe mode, is shown in Figure 1.

9
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In the test set--up, it was noted that when the bent-pipe channel

consisted of noise only, the Costas loop which is tracking the unbalanced

QPSK signal at 8.5 MHz eventually would lose lock, flip 90 0 , and begin

tracking the 192 kbps low-powered signal. When the Costas loop tracks

while using as its primary input the 192 kbps signal, loss of lock did

not occur at high values of signal-to-noise ratio. At the time, it was

thought that this phenomenon was due to equipment malfunctions in the

laboratory set-up.

As a result of the conclusions of the analysis i.n this section

(2.0), it is shown that the existence of this phenomenon is not due to

equipment malfunction. In fact, the analysis supports and predicts such

occurrences. In addition, it is explained why this phenomenon occurs and

under what conditions it can happen.

A previous analysis [1] did not support the observations of the

laboratory set-up, because the values of the parameters used -in [1] were

not commensurate with those used in the laboratory nor with those envisioned

in the actual bent-pipe communication link. When values are used for

parameters which are consistent with those in the laboratory set-up, then

the analysis correctly agrees with and predicts the observations in the

laboratory.

There is therefore a fundamental problem with the bent-pipe
channel. It is necessary that the Costas loop track without ambiguity,

even in the absence of a bent-pipe signal, since the lower—powered 192 kbps

operations data link is always on. When the bent-pipe signal is off, the
Costas loop eventually tracks the 192 kbps signal, because this is what
it now observes. The Costas loop always tracks the largest powered signal

that it sees.

The sets of system parameters which cause the Costas loop to not
track are determined. There is agreement of these results with the tests
conducted by NASA-.JSC. Several proposed alternatives to system parameters

are .considered which will avoid this problem, and the best of these is
recommended.

We begin by describing the bent-pipe channel in the next section.
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2.2	 Coherent Trackin4 of Noise in the Bent-Pi pe Channel

In this section, the performance of the bent-pipe channel is

developed when the signal in the bent-pipe channel consists of noise only.

The block diagram of the narrowband bent-pipe test implemented at NASA-

JSC is shown in Figure 1. Referring to the figure,

m2 (t) = the desired bent-pipe signal, which is NRZ data (in the
high-power channel) with data rate R 2 , where
16 kbps <_ R 2 < 2 Mbps

DPFI = a bandpass filter which is a candidate fix for the 'bent-
pipe tracking problem that will be subsequently described

n(t) = additive white Gaussian noise

LPF = lowpass filter with a 4.0 MHz bandwidth

ml (t) = 192 kbps biphase-L data (low power), operations data link

p i = power ratio of the ith channel (i= 1,2)

M
3 
(t) = 100 Mbps NRZ data

mi (t) = the ith recovered signal (i= 1,2,3)

fBP = bent-pipe signal subcarrier frequency = 1.024 MHz

fsc = lower rate channels QPSK subcarrier frequency = 8.5 MHz

fc = carrier frequency

BPF2 = bandpass filter with a center frequency of 8.5 MHz and a
bandwidth of 6 MHz.

Two levels of unbalanced quadriphase modulation are implemented to

modulate the three existing channels. A filtered additive white Gaussian

noise is added to the PSK modulated bent-pipe signal, which is then hard-

limited and QPSK modulated with m l (t) o a subcarrier f sc . The combined

signal, which models the bent-pipe waveform received on the Orbiter, is

then QPSK modulated with m3 (t) on a carrier f  and passed through a high

SNR link. The link is simulated via two attenuators and a TDRS nonlinearity

simulation block. The demodulation is performed using two Costas loops to

recover the carrier (f
c
) and the subcarrier (f sc ) before bit synchronization'

and recovery of the bent-pipe subcarrier takes place.

In order to obtain a direct evaluation of the effects of the bent-

pipe signal, the block diagram of Figure 1 is simplified and the bent-pipe

signal processing is isolated by eliminating both the high rate channel

m3 (t) and the RF channel. This is achieved by connecting points A and A'

in Figure 1. Since it is believed that the high rate channel m 3 (t) has

little effect on the performance of the subcarrier demodulation and that

I'
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the existing RF channel is a high SNR chanviel, this step will greatly

simplify and isolate the bent-pipe signal processing for analysis. It

will also simplify initial laboratory testing and eliminate any additional

I

	 hardware complications without greatly disturbing the circuit performance.

I	 2.2:1	 Coherent References for the Bent-Pipe Signal Format

One of the key issues regarding the bent-pipe channel Ku-band
i	

return link is the generation of a coherent reference.. This is the case

both when the bent-pipe signal is present and when it is absent. In this

section, we concentrate on those periods of time when the desired bent-pipe'

signal is absent. In particular, a conventional Costas loop is used for

tracking of the unbalanced quadriphase modulation consisting of 192 kbps

biphase data (operations data link) on the low power (20%) channel and

the bent-pipe signal on the high power (80%) channel. As a worst-case,

the loop is required to provide a coherent reference for tracking when the

desired bent-pipe signal is absent, in which case the bent-pipe channel

input c.onsists of noise only. When this is the case, it is still desired

to obtain a coherent reference. Specifically, the bent-pipe is assigned

one channel of the QPSK signal on the 8.5 MHz subcarrier.

When the bent-pipe mode is operating, the high power channel is

processed by a hard-limiter before entering the QPSK modulator. The per-

formance of the bent-pipe channel with signal present has recently been

determined [21. The bent-pipe signal was assumed to be either NRZ or

biphase=L. The bent-pipe signal processing consisted of two candidates:

(1) linear BPF and (2) linear BPF followed by a hard-limiter. The two

cases performed similarly, therefore .justifying the use of the hard-limiter

for the purpose of controlling signal strength. It was also shown that

(1) the RMS tracking error increases as the data rate in the bent-pipe

channel increases and (2) the RMS tracking error increases as the SNR in

the bents-pipe channel decreases,

The QPSK signal -which includes the bent-pipe (see Figure 1) is of

the form

x(t) = 4P 
1 
m

I
(t) cos 0(t) + 2 m2 (t) sin ^D(t), 	 (1)

where 4)(t) = w0 t+ 6(t), and Pi 0 = 1,2) is the average power in Channels 1

and 2, respectively. 6(t) represents any existing deppler frequency shift,

oscillator instabilities, and an arbitrary phase reference e 0 . The low

i
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powered signal is ml (t), which is biphase-L at 192 kbps. The high powered

signal is modeled as white Gaussian noise passed through an LPF and then

a hard-limiter, as shown in Figure 2. The LPF is assumed to be first-

order Butterworth (RC) with noise bandwidth of approximately 4 MHz.

First- y(t)	 +1	 z(t)= m2(t)

WGN	 Order

	LPF	
`1 HL

Figure 2. Candidate Model of Noise Signal for Bent-Pipe

When the bent-pipe channel noise is filtered and hard-limited,

it appears to the tracking loop as a digital (binary) "data" waveform on

the high power channel which differs from a true data waveform in that

its zero crossings occur randomly rather than uniformly distributed. The

average rate of zero crossings is related to the filtered noise bandwidth.

More important than this difference, however, is the fact that the two

have different autocorrelation functions. In fact, insofar as determining

loop tracking performance, only the autocorrelation fun;tion of the high

power channel "data" waveform is needed, irrespective of whether this wave-

form corresponds to true data or hard-limited filtered noise or even, for

that matter, hard-limited filtered bent-pipe signal plus noise.

When such a model is employed for the resulting bent-pipe signal

in Figure 2, it can be shown [3] that the autocorrelation function of

m2 (t) is equal to

J	 RX(T) _ ^ sin-1 R (T)
R ^	

(2)

y

where Rx (T) is the autocorrelation function of the process x(t) at the

output of the LPF.

An alternate model for m 2 (t) is to assume that it is a random

telegraph signal. The advantages and disadvantages of both models are

developed and discussed in the next section. With either model of m2(t),

R



it will be shown that the error signal in the Costas loop has a spectral
component at DC which is proportional to the difference in power of m2(t)
and m 

1 
(t). It is also proportional to the sine of twice the phase error,

namely, sin [2^(t)], where ^(t) is the difference between the received
signal phase and its estimate in the tracking loop.

2.2.2	 Models for Bent-Pipe Noise

Two different models are considered for the noise signal in the
bent-pipe. In either case, the resulting signal takes on only the values
of ±1, as shown in Figure 2.

Model I - Random Telegraph Model

In this model, we assume the process changes from +1 to -1, and
vice versa, at random points in time which are controlled by the Poisson
process. fl -wc r the Poisson process, the probability of k events in t 

e 
sec

is given by

P [ k in t el	 k!	
exp (-X t 

e
).	 (3)

Whenever an event occurs, the noise changes value. The result
is the random telegraph signal [4], which has an autocorrelation function
given by

R 
m 

(T) = exp (-2XITI)	 (4)
2

where X in (4) is equal to X in (3), which is the average number of events

per unit time. The corresponding power spectral density is

S M	 4X	 (5)
2	 4X + (2Trf)	 X[l + (Trf/X)

This has the same form as white noise through a first-order filter,_although
the sample waveforms from the two processes do not resemble each other
at all. The one-sided noise bandwidth of the random telegraph signal
(including hard-limiting) is B NI = X/2, where "l" represents Model 1.
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Model 2 - Hard-Limited Gaussian Model

This model consists of the one shown in Figure 2. In [3], for

example, it is shown that the autocorrelation function of the output of

a hard-limiter can be expressed in terms of the autocorrelation at the

input, namely,

R (T)
Rm (T) = X22 sin-1 

R 0
	 (6)

y

when the input is Gaussian.

The normalized autocorrelation function of y(t), py ( T), is

obtained from passing white noise through a lowpass filter (LPF), as

shown in Figure 2. The transfer function of the OF is assumed to be

first-order Butterworth, so that

F(j27rf) = 1 +j if/f )-	 (7)
3

where f3 is the 3 dB cutoff frequency.

The one-sided noise bandwidth, BNy , before the hard-limiter is

equal to

BNy	
2 f	 (8)32

where the "2" represents Model 2. The normalized autocorrelation function

is then given by

R (T)
py(T)	

R 
0	 = exp ( -alTl)	 (`1)

Y

when	 a = 2 , rf
32
 = 4BNy .	 (10)

3

'

	

	 In some of the computations which follow; it is desirable to

employ an approximation to Rm2 (T) in (6) which is.more tractable. For

this, we consider the approximation

Rm (T) z exp (-alTI)	 (11)
.	 2

9

I

x
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A

where "a" is chosen to be the best least-squares fit. This is actually

the least-squares fit of the random telegraph autocorrelation function to

that of Model 2. The mean square error between the two is given by

E2.	
= min 

foo 

sin - ' [exp (-a	
2

T)] - exp (-aT	 dT	 (12)

	

a 0	 d

After simplification, we obtain

a -1
2 	 1	 2	 - la - 1 r a 

2	 4	 2	 1
min	 min 2a - a 1	 a	 + 2	 sin-1 (exp (-aT))^ dT	 (13)a 1	 2 r 

2'a 
+1^	 Tr	 0

Letting n = a/a, then for a given value of B Ny , E2 is minimized by minimizing

its first two terms. (Note: the third term in e2 is always positive.)

Thus, we desire the solutionof

1	 3	 (n 1) r(Tni 21
f (n)	 min	 n	 +2	 n+ 2	 (14)

	T1 	 ►r r ( 2 )

Since (14) is transcendental, it must be solved iteratively, with the solu-

tion being* n = 1.13, or a =1.13 a = 1.13 (4 BNy ) .

Therefore, we can approximate Rm2 (T) for Model 2 by

Rm 
2 
(T) z exp (-aITI)	 (15)

where	 a = 1.13a = (1.13)(46 Ny ).	 1

The corresponding approximate power spectral density for Model 2

is given by

S (f)	
2a	

(16a)

	

M2	 a2+ (2Trf)2

If sin- l (•) is expanded in a power series and the first two terms
are normalized and used to obtain the least-squares fit, for an approxi-
mation of the form in (11), the result is n= 1.12, which is negligibly	 3
different from that shown above using the exact representation of Rm2(T).

y
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or

1
(16b)

(2.26 
BNy )	+ 2.26)  (BN

y

When the approximate P5D obtained for Model 2 in (16) is compared to that

obtained for Model 1. in (5), it is noted that they are identical if we

set

	

2B NI= A = 2.26 BNy .
	

(17)

The 3 dB bandwidth and the erne-sided noise PSD, BN29 for the

approximation of Model 2 are given by [from (16)]

2.26	
2B 

N2
f32 -	 7r 

BNy =	 r	 (18)

Equivalently stated, when (17) is satisfied, the 3 d5 cutoff frequencies

and the noise bandwidths of the noise process, M
2
 (t), are identical for

both models.

The exact representation, as well as the approximations of the

second-order statistics of both models, will be used in the development
which follows. Alternate descriptions of the output signal and noise sta-

tistics of the bent-pipe payload processor are given by [5].

2.2.3	 Bent-Pipe Analyses Without Desired Signal

When the bent-pipe channel is being used, whether or not a bent-

pipe signal is present, a coherent reference must be maintained in the

Costas loop in Figure 3 so that the 192 kbps low power (20%) signal

(operations data link) can be extracted.

In order to obtain a preliminary assessment of the tracking _capa-

bility of the Costas loop when the bent-pipe signal consists of noise only,

the additive channel noise, n i (t), in Figure 3 is assumed to be zero.

This is a reasonable assumption since that link has a high signal-to-noise

ratio. The development in this section is independent of the choice of

model for the noise in the bent-pipe channel. The received signal into

the Costas loop, x(t), is then given by (1) and is demodulated by the

quadrature reference signals;
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—► To m2 data detect

1

Km 	 Es (t)	 Lowpass
Fi l ter
G(s)	 j

zs(t)
rs(t)

n ' (t)	

KI
V

s[t,a(t) ]	 x(t)	 Kl	 Loo Filter	
z0(t)

-+-	 ^'`GG	 F(s)	 €
^i

_
7r/2

Lj
z^(t)

r^(t)

Lowpass
Filter  

7:c() 

_G(s)

f
r

To ml data detect

Figure 3 Costas Loop for Ku-Band Demodulation of the Bent-Pipe Signal'

Ln



h
rs(t)	 =	 T K1	sin 4'^'(t)

rc (t)	 =	 Yr2_ K1 cos $D(t)	 9
a

(19)

where (D(t)	 = w0 (t)+ e0 (t),

and ^(t) eo (t) - 6G (t)	 is the loop phase error. (20)

The following devel opment is similar to that ing	 p [ 6j.	 The corre-tJ	 ^
sponding phase detector outputs, after ignoring second-order harmonic

terms, are given by

E s (t)	 _ Km x(t) rs(t)

= K1 Km PPZ m2 (t) cos ^(t) - VP-1 m l (t) cos ^(t)f
►►►►►►

(21a)

and
---

cc (t)	 = Km x (t) rc(t)

= Kl Km [VIP 2 m2 (t) sin o(t) + P m l (t) cos 0(td . (21b)

After the signals e s (t) and cC(t) are lowpass filtered by the

arm filters G(s), these signals become, respectively,

z	 (t)	 = G(p)e	 .(t}

1

s s

= K 1 Km [AP-2  m2 (t) cos ^(t) - /Fl m l (t) sin $(t^ (22a)
and

zc ( t )	 = EG(p)C(t)

= K1 
Km 3P2 m2 (t} sin 0(t) + 3P l m l (t) cos O(t) (22b)

where the "hats" denote lowpass filtering of the corresponding signals by

G ( p ) , i .e.. ,

mi (t)	 G( p ) m 1 (t)	 i =-1,2 . (23)
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The output of the third multiplier, which is the loop phase

detector, is the dynamic error signal

z0 (t) v zS(t)zc(t)

2 2

N K 1 n [ 2 (m2 (t)^ 2 - P l (ml (t)^ J sin (2^(t)) + 2 3P 1 P2 m l (t) m2 (t) cos (20(t))
2	 L^

(24)

The instantaneous frequency of the VCO output is related to z0(t)

by

^dt 	 = K  [ F ( p ) z0 (t)J + u,0 .	 (25)

As a result, the stochastic integro-differential equation describing the

loop operation becomes

2 d dt
	

2520 - K F(p) 
[P2(m2(t))2 ` Pl (m l (t>)^ sin (20(t))
+2 P	 ml (t) m2 (t) cos (20(t))	 (26)

where n0 = wrec - WVCO is the difference between the received carrier fre-
quency and the VCO rest frequency in rad/sec, and

K	 K  K 12 Km	 (27)

is the equivalent loop gain. Inspection of (27) indicates that any

imbalance in the arm gains of the Costas loop is not a problem. The

effect is only to vary the overall equivalent loop gain K.

It is convenient in problems of this nature to decompose each of

the signal terms m i '(t); i= 1,2, in (26) into its mean value plus the vari-

ation about the mean, i.e:,

Emk (t)^2 	<E ftyt)]2}>+[mk(t)]2 - ^E ^m ( t )] 2^>; k= 1,2 ( 28)

where E denotes ensemble averaging and < > denotes time averaging. The

additional time averaging is necessary for m2 (t), since it is a cyclo

stationary process [7]. It is not necessary for m2 (t), since we have

b:

k,
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assumed it is a stationary noise process. It can be shown directly that

<E^[mk(t)]21 J	 Dk R E
D S
m (f) I0( j 2?rf) I 2 df ;	 k = 1,2 .	 (29)

,k

Also, since ml (t) and m2 ( t) are independent,

E[m l (t)m2 (t)] = 0 .	 (30)

In (29), Smk (f) denotes the power spectral density of mk(t),

k= 1,2, and iG(j2wf)I 2 is the magnitude squared of the arm filter transfer

function. Rewriting ( 26) using the above decompositions, we obtain

2 d dt	 = 2520 - K F(p) { ( P2 D2 P 1 D 1 ) sin (2^(t)) + ne (tq	 (31)

where the total equivalent additive noise n e (t,f) is given by

ne (t,O = [ P 2 n 2 (t) - P l n l (t)] sin (2^(t)) + 2 P^ n l2 (t) cos (2^(t))' . (32)

The self-noise terms n k (t), k= 1,2, and the cross-modulation noise

n12(t) are defined by

r k (t)	 [mk(t)]2 - <E^[mk(t)12}>;	 k= 1,2	 (33)

and

n12 (t)	 ml(t)m2(t)	 (34)

2.2.4	 Statistical Characterization of the Total
Equivalent Additive Noise

The self-noise process in (33) and the cross-modulation noise

process in (34) all have zero mean and only a continuous component of

power spectral density. Since the bandwidth of these processes is very

wide with respect to the loop bandwidth, it is sufficient to find only

the power spectral density at the origin for each one which, when multi-

plied by the loop bandwidth, gives the contribution of the total noise

power of that modulation component. From (32), the autocorrelation func-

tion of ne(t,,f) is given by

.r

9

^Z
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i

Re ( T ,$)	 °_ <E Cne (t»o) ne(t +TMI

= Rn (T) + P2 Rn	 (T^
L^

[sin ( 20)]? + 4P P2 Rn	 (T) [cos (20)]2
L	 1	 ? 12

(35)

where	 Rn (T)	 = <E[nk(t) nk(t+T)J^ ;	 k = 1,2 , (36)

k

and	
R 
	 (T)	 _ <E [n12(t) n 12 (t+T )]>	 =	 Rm ( T )Rm (T) . (37)
12	 1	 2

In (37), the autocorrelation functions R m (T), k = 1,2, are given
k

1
I

' by

R,	 (T)	 =	 Sm (f) IG( j 27rf)l 2 exp (j27rfT)	 df	 k= 1,2 .
foo

(38)
k 	 k

i
The equivalent one-sided noise power r.p ,,actral density at the

origin of ne (t,o) is then equal	 to

rr

Ne(	 )	 =	
2 f-00 R

e (T,^) dT

}	 2 [ 12 sn (0) +P2S n (0)1 [sin (2^)] 2 + 8 P 1 PZ S o 	(q ) cos2 (2^) .
1	 2	 .1	 12 (39)

The first term in (39) is the self-noise term which can be ignored

with negligible error [8], particularly when the phase error is small.

When 0 is small, we upper-bound the cos 2 (20	 factor by unity in the
second term; therefore,

N e (^)	 8 P1 P 2 D12 , (40)

where

012	 Sm	 (0)	 =	 S	 (f) * Sm (f)

`1̂ 12	 1	
2

f=0

E

f
Sm (f) S 	 (f) IG(j27rf)l 4 df • (41)

0	 1	 2

7
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2.2.5	 Effective loop Signal-to-Noise Ratio and Phase Jitter

From the stochastic integro-differential equation of operation
given in (31), we can see that the effective loop signal-to-noise

ratio [9] is given by

_ [P2D2 PID1
]2

Pee	 NeBL	 (42)

where BL is the single-sided noise bandwidth of the linearized tracking

loop. Thr variance of the phase j itter is therefore given by [9]:

a2= Pe-1 
(rad) 2 	(43)20

or, equivalently,

o2 = 4 a^2^ = 4pe (rad) 2 .	 (44)

Substituting (40) and (42) into (44), the RMS phase jitter can

be expressed as

G^ =	
12	 L	 (rad).	 (45)

P^ D2 - 3P l /P2 D1

A normalized RMS phase jitter can also be expressed as

5— _	
42 3D12

VBF	 P D - 3P /P D ( (rad/)
	 (45)

L	 2 1 2	 1 2 1

In (46), the terns D 1 , D2 and D12 are dependent on the data format and

the arm filters type. This result is general in that the modulation

and noise in x(t) (Figure 3) affect the evaluation of D l , D2 and D12

but do not affect the basic structure of (45) and (46). Only a cursory

examination of the normalized RMS phase jitter performance prediction

given by (46) indicates that there may be need for concern. The
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denominator of (46) consists of the absolute value terms. Clearly, as

the values of these two terms approach each other, the Costas loop cannot

be expected to adequately provide a satisfactory coherent reference signal.

Heuristically, this result is not surprising, since a Costas

loop will not track a balanced QPSK waveform. Equivalently stated,

when the denominator in (40) goes to zero, the power in the error signal

being processed into the Costas loop also goes to zero. Alternatively,

when the denominator in (45) goes to zero, the signal powers in the arms

of the Costas loop are equal.

In the next section, specific examples relevant to the Shuttle

Ku-band subsystem are investigated, wherein the values of the two terms

in the denominator do indeed approach each other.

2.2.6	 RMS Phase Jitter When the Bent-Pipe Noise is
Represented by Model 1

The general result developed in the previous section for RMS phase

error is applied to the specific case where the bent-pipe noise is

modeled as the random telegraph signal.

In particular, the bent-pipe example consists of:

(a) m I (t) = 192 kbps biphase-L data (operations data link),

and	 (b) m2 (t) = the random telegraph signal with parameter X dis-

cussed in Model l in Section 2.2.2.

The power spectral density of m l (t) is equal to

sin  Off T1/2)
S l (f)	 T1	

2	
(47)

(Trf Tl/2)

Assume further that the arm filters are first-order Butterworth (RC)

filters with transfer function

G(j2Trf)	 1(48)

1+j(f)
3

where f3 = 0/70G 
i  
is the one-sided 3 dB bandwidth and B  is the two-sided

noise bandwidth. The factor D 1 in (29) is then given by

f^
D 1	 D1(biphase-L) 

	
Sm 

1 
(f) IG(j2Trf)^ 2 df	 (49a)
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00 T 1	sin 	 (Trf T1/2) 1
or	 D	 =

1	 [CO Off(	 12/) 1+	 f	 2
(f3)

df . 4 b(^	 )

4
It is shown in the next section that h

D 1 (biphase-L)	 1 - (2 B 	 T 1 )
-1

 [3 - 4 exp(- B 	 T 1 ) + exp(- 2 B 	 T 1 )] .	 (50)
l

The power spectral density of the noise process m2 (t) is developed

in Section 2.2.2, where it is concluded that

2

where X is the average number of zero crossings of the random telegraph

signal	 per unit time, and BNR4 A/2 is its one-sided noise bandwidth.

From (29), therefore,

a-

D2	
-	

(^ Sm (f) 1G(j21rf)1 2 df
J_00	 2

_ E X-1 rl + CTf1-'. 1 + (	 )2 1 - 1 
df . (52)

 31

This can be integrated via partial 	 fraction expansion:

Trf3	
/ 5i

1^ 6	 1N_
D2 	 Trf	

^	
E • (53)

T + ^3	 1 + Z ^Q ^—^
Ni

The remaining coefficient is

D12	 = h Sm (f) S	 (f) (G(j2Trf)l	 df , - (54)	 z
1	 2

which,	 in this case, is given by

i

1N

}

R
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D12 	 1

m Ti sin (7rfT1/2) 	1	 1	
2

00 Ttf T I /2) 2	 a 1 (if- '2	 i+ f 2	 df .
{ 	 ^{^)	 {f3)

- 2B	 1 B 2 1 261T [3 - 4 exp(-B i T I ) + exp(-2BiT1)]
NR	 i 1

B.	 2 iB
i	 NR

1	 1
+	 26

NR
 2 2 1 ° 46NTI [3- 4 exp(-2BNRTI ) + exp(-4B N RT 1 )]	 (56)

1	 ( B l
i

In the next section, the techniques used to evaluate these ,neces-

sary coefficients are presented when the bent-pipe noise is modeled as

the random 'telegraph signal. The results of numerical computation are

then presented.

2.2.7	 Evaluation of the Coefficients in Phase Jitter When
the Bent-Pipe Noise is Modeled as the Random
Telegraph Signal, Model 1

Referring to the coefficients developed in the previous section,

we first consider NRZ data, for which the power spectral density (PSD) is

sin (7rf T 

l ) 

2
Sm{f)	 T1	 7fT	

(57)
1

where T. is the symbol time. When the arm filter is first-order Butterworth
1

and the data is NRZ, then

(
00	 CO2	 sin (7rf Tl) 2	 IDi	
J Sm(f) [ G(j27rf)	 df - j Ti	 7rfTf 2 df	 (58)

+ { f3 )

23

(55)

n

This integral is evaluated in the next section. We have that

6 12 - 2BN.R	
8i V 1 - 46iT1 [9 - 4(3+B i T I ) exp(- B i T i ) + (3 + 2B i T l ) exp(-2B i T I )]

2s
NR

X

9
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This integral can be evaluated via Parseval's Theorem. 	 Using the

Fourier transform pairs

.(TrfT 21IT-i ;	 ITI	 _T1j 1 	l_	 1(sin
^^T1	 TrfT

1 0 ;	 otherwise

and 	 1	 (	 =	 Trf	 exp(-27rf	 T ) t
l l * (f )2)	

3	 34
3

(60)

the coefficient D 1 can be written as

1tT T
D 1 (NRZ)	 =	 2

J
	1 - T	 (Trf3 ) exp(-2Trf3T) d-r <.

`	 1/
(61)

0

This can be integrated directly, with the result that

D i (NRZ)	 =	 1 - (27rf3T 1 )- 1 (1 - exp(-2Trf3T 1 )} (62)

In terms of the two-sided noise bandwidth of the arm filter, Bi=7rf3,

the coefficient D 1 becomes

D^ (NRZ.)	 1 - (2B i T 1 ) -1 (1 - exp(-2B i T 1 )) , (63)

which is the same result obtained in [6].	 For biphase-L data,

sin4 (Trf T1 /2)
S (f)	 _	 T

M	 1 (Trf	 /2
(64)

T^

a Employing the trigonometric identity,

t
sin 	 x	 =	 sin 	 x - 4 sin g	( 2x) , (65)	

:.

the PSD in (64) can be expressed as

Y

t

4
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sin  (Trf T 1 /2)	 sin  OffOffT1
S (f) = 2(L)2 /	 - T1	 2	 (66)

	

(Trf T 1 /2)	 (Trf T i )

Spectrally, this looks like the difference of two NRZ spectra of
different data rates. Taking (66) and the result for NRZ data obtained
above, we have that

D 1 (biphase-L) = 2 D i (NRZ) IT
 -}T 12 - D1(NRZ) IT1

}T(67)

	1 	 1 	 1

Substituting (62) into (66) and simplifying yields

D 1 (biphase-L)	 1- (26 i T0 -1 [3 - 4 exp(-B i T I ) + exp(-2B iTl )] , (68)

which also agrees with that in [6].
The remaining integral for the random telegraph signal is D12,

as given by (55) in the previous section. This integral can also be
evaluated via partial fraction expansion of the last two bracketed terms
in (55), with the result that D 12 can be written as

D	 2Tr3T g	 f 4 1	
1	 °c sin4 (x T l /2)	 dx

12	 1 N1 3	 2B	 2 - Trf 2	 x T 1 12) Z	 Trf	 +x2 2

r

	

_	 1

	

sin (X (x T l /2)	 dx

	

(2B N O 	 (Trf3) 2	 f-CO	 (xT l /2) 2	C('rf3)2+x2]

1	 sin4 (x T1/2)	 dx	 l	
P

	[(2B )	 Trf)	 xT /2) 2	26	 2+x2N1	 (	 3	 ]	 (	 1	 C( N1 )	] J

From 58 and 62

sin 4 (x T /2)	I 	 dx	 Tr	 1(	 x'
2	 2	 2 -	 2 1	 26.T I3 - 4 exp(-B i T l ) + exp(-2B

	

(x T / 2 )	 [(f) +x ]	 T 1 B i	 i 1

(70)
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where B  = Trf3

sin4 (x T1 /2)	
dx

xT	
26 2+x2

(	 1 2/)	 C( N1)	 J

	—^ 	26 1 T7T [3- 4 exp(-2B N1 T 1 ) + exp(-4BN1T1)]
4T1BN1	

N1 1

and	 (71)

f

sin  (x T
1 /2)

	

	 dx

(xT 2	 7Tf 2 +x2 2
1 /)	 C( 3 )	 J

3------	 1- 4^r f T C9 - 4(3 + Trf 3T 1 ) exp(-Trf3T 1 ) + (3 + 21Tf 3T 1 } exp(-27rf3T 1 ]
Tr T 1 f ,3	 3 1

(72)

Upon substitution of (70) and (72) into (69), we obtain

D	 = 2 (T 6 4
B ) j	 1	 Tr i

12	 Tr	 1 i N1 1 (2B ) 2 - B? T B 4
N1	 i	 1 i

i'

x 1-[9- 4(3+ B.T ) exp(-B.T ) + (3 +2B.T ) exp(-26 T )J

	

46 ^ T1	 ^ 1	 T 1	 ^ 1	 ^ 1
2

	

12	
2	 1 - B T [3 - 4 exp(-B i T I ) + exp(-2BiT1)]

(2BN1 ) - B i 	T1Bi	 i 1

+
^	 1	 2	 7T
^(2BN1 ) 2 - B i	4BN1T1

x I I 
_

46.. ,1 T, [3 4 exp(-2BN1 T 1 ) +exp(-4BNIT, )J^	 (73)

--
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a	
The results of this section, when substituted into the expression

for the RMS phase error (45), can now be used to predict tracking per-

	

'	 formance of the Costas loop associated with the bent-pipe channel. The

results of numerical computations are presented in Section 2.2.9.

2.2.8	 RMS Phase Jitter When the Bent-Pipe Noise is
Represented by Model 2

	

..
	 As pointed out previously, the structure of the general result

for the RMS phase jitter in (45) is independent of the modulation and

noise formats in x(t). They affect only the evaluation of D 1 , D2 and
D12 . In the bent-pipe model, the biphase-L assumption for Channel 1

remains unchanged. Therefore, D 1 = D I (biphase-L) remains as given by (50).
The coefficients D 2 and D12 are different, however. First consider

the exact evaluation of D 2 for Model 2, the hard-limited, filtered
Gaussian noise model.

The power spectral density for the hard-limited, filtered noise

model is obtained by taking the Fourier transform of Rm 2 (T) in (60) and
(63), namely,

S (f) = 1°'^ mzR (T)^	
(^ m

2m2	 R (T) exp [-j27rfT] dT

CO

JJJ	 J 

= 2 
fo 

Rin2 (T) cos 27rfa dT

4 fw sin- 1 [exp (-4BNyT)] cos 27rfT dT	 (74)
0

Although (74) resists a closed-form solution, we shall see that this is

not necessary to obtain a closed-form solution for the corresponding

coefficient D 2 . In fact, substituting ,(74) and the squared magnitude
of (48) into the definition of D 2 in (29) gives

j^ co

D2	
8 J sin 1 [exp(-aT)] j cos f fT df dT	 (75)

0	 0 1 + ( f )
3

From_Equatton 3.723-2 (p. 406) of [10], we have that
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cos	 x	 TT a-Y$a	
0 B +x	

- U (Y>0, 8>0) .	 (76)

Thus,

D2 	Bi	 sin - [exp ( -aT )) exp (-ZIB	 &(77)
TO

Letting

	x = exp (-aT) ;	 dx = -ax , dT ;	 (78)

and

	

B./(2B )	 B./(26 )
exp (-2B T)_ [exp (-aT)]	 Ny	 x	

Ny	
(79)

then, using (10)

D	 - 1	
Bi 	 x((BL/2BNy)- 1)

- 1f

l
®	 (sin	 x) dx.	 (80)2	

Tr BN
Y

The integral in (80) can be integrated bg	 y parts. Letting y = (B i /BNy )- 11
i	 then

l

fxY sin
1
 x dx	 xY [ x sin

-1 
x + 1x2

0 ^.--^--^	 0
u	 dv

fl Y xY^(x sin
-1

 x) dx	
1

Y xY-1 ,J1 - x2 dx

	

^
p	 fo

Tr - Y l xY sin- 1 x dx	 Y l xY 1 1 - x2 dx.	 (81)
2	 f0	 f 0

J

Thus,

I;	
I
	 1

f xY sin 	 x dx	
11	 2

f 
l# ) [21 -Y f

xy-	
- x dx	 (82)nn

But, from equation 3.251-1 (p. 294) of [10],
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1
f

x 11-1 (1 - xY
_ 
1 dx 1 B (a ^v) (P,V,x> 0)	 (83)

0

where

B(x,y) =	 r rx X +t y) (84)

is the beta function.	 Thus, letting p = y, X = 2, and v;=3/2,  we get the

desired result

r(Y)r(3)

f

1 
xy sin

-1 x dx =	
( 1 +y ) 2 - z (85)

r2^2
0

(2)

Finally, letting y= (B i /BNY )- 1, and using r(3/2) = r/2, we have from-

(85) and (80) that

Bi _ l

	

_	 1	
Bi	 ` r (4BN 	2}

	

02 - 	 l,!	 (86)

	

2w)(
26

 N	 /	 iy
	 T (

4B	
+ 11

Ny	 J

The remaining term to be evaluated for Model 2 is the cross-correlation

coefficient D12 , defined by (41). This is considerably more difficult

to compute when Rm2 (T) is given by (6) and (9). Since this cross-

correlation coefficient does not appear to be attainable in closed form,

we alternatively employ the least-squares approximation of the autocor-
b

relation function of Model 2 by that of the random telegraph signal.

This is discussed in Section 2.2.2. The net effect of this approxima-

tion is to replace BNl in (73) by

f

B	
} 2.26 6

N1	 2	 NY f87)

2.2.9- RMS Phase Error Computations When the Bent-Pipe
Signal is Noise Only

The analytical results of the previous sections have been computed

for typical parameters when the bent-pipe signal is noise only. When the

power ratio is
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P2
P	

= 4	 (88)
1

then the denominator in the RMS phase error expression goes to zero when

4D2 - D 1 = 0
	

(89)

The conditions under which this occurs for Models 1 and 2 are

shown in Figure 4. For Model 1, D I is given by (50) and D 2 by (53).

Therelationship between B i /(2BN1 ) and B i T I which satisfies (89) is

shown in Figure 4. The symbol time Tl is that of the 192 kbps operations

,data link. 'Therefore,

T 1 = [192 kbps] -i = 5.2 sec.

The bandwidth B  is the two-sided noise bandwidth of the arm

filters in the Costas loop. The bandwidth 
BNi 

is the one-sided noise

bandwidth of the 'random telegraph model of the bent-pipe noise after

the hard-limiter.

The arm bandwidth B  of the Costas loop has an optimum value [8]

depending on the anticipated data rate and choice of signal format in

Channel 2, the high power channel. For example, if we assume the range

of data rates in the bent-pipe channel (Channel 2) is (16 kbps, 2 Mbps),

and if we assume the biphase-L waveform, the optimum value of B  is

approximately twice the data rate. Therefore, B 
i 
T 
I 
roughly ranges over

the interval (0.1,20).

Examination of Figure 4 shows that, for each value of B i T I , there

is a choice of B i /(2BNI ), and therefore B N1 , which will cause the powers

in the arms of the Costas loop to be equal, with the result that the loop

will not operate. For Model 2, Dl is again given by (50), but D 2 is now

given by (86),

The argument of the gamma function in the numerator is between

(-1,0). The reflection formula [11] can be used to obtain a gamma function

with positive argument which is then amenable to polynomial approximations.

The results are labeled Model 2 in Figure 4, where the noise bandwidth

i	 is BNy . This bandwidth is for the signal y(t) in Figure 2 after the OF

and before the hard-limiter,
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Inspection of Figure 4 reveals that the results for both models

are similar. Since the two models are very dissimilar, however, it can

be concluded that the phenomena described in Figure 4 are independent

of the choice of model for the bent-pipe noise.

For each value of B i T i . when the bent pipe signal consists of

noise only, there is a noise bandwidth of the bent-pipe noise which is

such that the Costas loop has the same power in both arms. The result

is that the power in the error signal goes to zero, and the loop will

not track.

For the random telegraph signal, the cross-correlation coefficient

D12 defined by (41) has been evaluated in closed form. The result is

given by (73). Along with exact expressions for D 1 and D2 given in (68)

and (53), res,pectivel,y, an exact closed-form expression for the RMS phase

error is obtained for Model 1.

The results are shown in Figure 5, where the RMS phase error is

plotted against B i T i for various values of 8 N that are considered typical
for the .bent-pipe Diode. The RMS phase error is shown for B L , the Costas

loop noise bandwidth, equal to 300, 500, and 700 Hz, in Figures 5a, 5b,

and 5c, respectively. It is observed that, for each value of B Ni , there

is a value of B i T I where o -r-. Also note that, as the value of BNi is

increased, the value of B i T I where a ->- also increases. Finally, observe

that, on either side of this critical value of B i T i , satisfactory tracking

is attained.

For the Gaussian noise model through the hard-limiter (Model 2),

the cross-correlation coefficient D 12 has been approximated as described

at the end of Section 2.2.8. When the exact expressions for D i and D2

and the approximate result for D 12 are substituted into (45) for cr,, the

result is as shown in Figure 6. The RMS phase error performance of the

Costas loop for Model 2 is similar to that for Model 1. The variation in

performance with respect to the loop bandwidth BL and the noise bandwidth

is similar in both cases. The noise bandwidth 
BNy 

in Figure 6 is for

the noise Model after being filtered by the __first-order Butterworth filter

and before the hard-limiter -in the bent-pipe signal processor.

In Section 2.4, these results are used to explain the tracking

anomalies in the laboratory setup at NASA-JSC. In addition; various

alterations are discussed and our recommendations are given.

a
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	2.3	 Biphase Costas Loop Trackin q of a Hi gh SNR Bent-Pi pe Signal

When the bent-pipe channel to the PI operates at high values of

signal-to-noise ratio, it can be assumed that the received waveform con-

sists of the desired signal only.- When this is the case, the combinations

of signal formats, data rates, and signal-to-noise ratios which give

satisfactory performance have been addressed by Simon and Alem [6].

The design of the bent-pipe signal processor needs to emphasize

the case when the bent-pipe channel consists of noise only. When the

design has been chosen so that the bent-pipe channel provides a satisfac-

tory reference 'even in the absence of a data signal, then the range of

data rates and data formats that are acceptable for the bent-pipe channel

can be determined. In this report, we emphasize the design parameters so

that the channel operates satisfactorily in the absence of a bent-pipe

signal.

	

2.4	 Discussion of Possible Alterations and Our Recommendations

The possible alterations which will avoid the situation where

the Costas loop will not track are best described by first relating our

analytical results to the results of the NASA-JSC laboratory tuts

described in [12].

Example - NASA-JSC Laboratory Test of Bent-Pipe Noise

The NASA-JSC test is very similar to the system description given

in Figure 1, with

in 2(t) = 51.2 kbps bent-pipe NRZ data modulating a 1.024 MHz
squarewave subcarrier

n(t) = additive white Gaussian noise

LPF = lowpass filter (which shapes the PSD of the noise) with
a 3 dB bandwidth of 4 MHz (see Figures 1 and 2)

ml (t) = 192 kbps biphase-L data (operations data link).

The signal-to -noise ratio in the bent-pipe signal at the input to
the hard-limiter in Figure 2 was varied in the laboratory test setup

over a range ofvalues of signal-to-noise ratios [12]. We will look at

both the high and low signal-to-noise ratio cases.

As indicated above, the lowpass filter which shapes the spectrum

of the bent-pipe noise is first-order Butterworth with 3 dB bandwidth



40

(90)f3 = 4 MHz .

f

Therefore,

BNy = 2 f3 = 6.3 MHz	 (91)

= one-sided noise bandwidth.

Also, the Costas loop sees the 51.2 kbps NRZ data on the 1.024 squarewave

subcarrier as NRZ data with symbol rate approximately given by

1.024 + 0.051 = 1.075 Mbps .	 (92)

At large values of signal-to-noise ratio, the bent-pipe signal can then

be effectively modeled using either Model 1 or Model 2.

When a Costas loop develops a coherent reference from NRZ data,

there is an optimal arm bandwidth [13-14] which is dependent on signal-to-

noise ratio and filter shape. The optimal bandwidth is shown in Figure 7

using the results developed in [13]. For the bent-pipe NRZ signal at

1.024 Mbps, and an RC arm filter, the optimal choice of arm filter two-

sided noise bandwidth is within the interval

1.5 MHz _< B.	 _< 2.5 MHz.	 (93)
Copt

At higher values of signal-to-noise-ratio, the optimal value of B  is not

very sensitive, which can be seen from inspection of Figure 7. With B 

as in (93), then,

7.8 <_ B i T I s 13.	 (94)
3

Consider the following conditions:

(a) B i T I as in (94) (namely, [7..8,131)

(b) BNy as in (91) (namely, 6.3 MHZ)

(c) The SNR drops so that the bent-pipe noise dominates

Channel 2.
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Then, inspection of Figures 5 and 6 reveals that, within the entire

interval of B i T i in (94) and BNy ^ 6 MHz, the Costas loop performance

is poor to not tracking at all. This particular set of parameters used

for the NASA-JSC test is therefore not satisfactory. The analysis pre-

sented herein therefore coincides with the tracking difficulties encountered

in the NASA-JSC test.

Also, at high values of signal-to-noise ratio in the bent-pipe

channel, the squaring loss from Figure 7 is less than 2 dB, and this

situation prevails over a large range of high values of signal-to-noise

ratio. This also agrees with NASA-JSC test results. Equivalently stated,

with a power ratio of 4:1, a data rate ratio of 5:1, the RMS error is

approximately 2% of a radian [1] when the signal-to-noise ratio is 10 dB

in the downlink channel.

Returning to the noise-only case of this bent-pipe example, we
I :Y
	

also note from Figures 5 and 6 that B i T i = 20 is a satisfactory operating

point for both noise models when

B  < 6 MHz .	 (95)

The value of B 
i 
T 1 = 20 corresponds to a two-sided noise bandwidth of

B 
	 3.8 MHz	 (96)

and a 3 dB cutoff frequency for an RC arm filter of

f3 = 1.2 MHz.	 (97)

Also, for the range of B  shown in Figures 5 and 6, a smaller

value of B i T i would also produce satisfactory values of RMS phase error.

With these results in mind, we now consider various fixes so as

to avoid this problem and then make our recommendation.

Fix 1.	 This fix consists in setting the two-sided noise bandwidth

of the arm filters B  to be such that

B 
i 
T 1 = 20.	 (98)

This corresponds to

B  = 3.8 MHz

je
	 r,
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and a 3 dB cutoff frequency of the arm filters of 1.2 MHz. At high values

of signal-to-noise ratio in the downlink channel, there is negligible

increase in squaring loss incurred by this widening of the arm filters

of the 8.5 MHz Costas loop [1,8, 131. This assumes that there is ade-

quate design margin in the Orbiter-TDRSS-ground link. The present filter

in the PI link has a noise bandwidth of B N = 5.5 MHz. From Figures 5

and 6, it is seen that, at B i T 1 = 20, any noise bandwidth in the bent-

pipe channel which is less than 6 MHz will not cause any tracking diffi

culties in the 8.5 MHz Costas loop: The RMS phase error will be less

than 3% of a radian (less than 1.75 deg).

This fix has the advantage that no changes are required on-board

the Shuttle and that no new hardware needs to be added on the ground.

Only arm filter changes need to be made.

Fix 2.	 This fix consists of narrowing the noise bandwidth of

the bent-pipe noise by placing a lowpass filter in front of the limiter

j	 in the bent-pipe signal processor on the Orbiter, while keeping the arm
r

bandwidth B
i
 fixed at its present value.

Examination of Figures 5 and 6 shows that, as B N _ is decreased,

the value of B i T i at which cry	also decreases. Therefore, by narrowing

B  sufficiently, say to 2 MHz, then the present value of B  could be used.

This fix has two disadvantages:

(a) It will significantly constrain the allowable data

rate in the bent-pipe channel.

(b) It requires additional hardware on the Orbiter (namely,

the added filter).

Fix 3.	 It has been noted in Figures 5 and 6 that, for a given

noise bandwidth B N , satisfactory tracking performance can be attained on

either side of the critical value of B 
i 
T . The present value of B  is

approximately 5.5 MHz. This fix is to reduce B  so that B 
i 
T 
1 

is well

below the critical value of approximately within the interval 8 to 10.

From Figures 5 and 6, a value in the interval l to 2 would be satisfac-

tory. This fix has the significant disadvantage that, if the actual bent-

pipe noise bandwidth is less than the maximum value it can be because of

B  filtering, this lower value may correspond to the new critical interval

for B iT . Equivalently stated, even though BN = 5.5 MHz, there is no
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a

guarantee that all bent-pipe noises will be at BN = 5.5 MHz.	 There is

nothing to prevent a smaller value, if that is the statistic of the noise
a

which is present.

Recommendation:	 Of the candidates, we recommend the first fix.

The payload interrogator must have a maximum allowable bandwidth which

is now set at BN = 5.5 MHz.	 If we narrow BN , a fix is obtained, but at

the expense of a smaller maximum data rate allowable through the bent-pipe

channel.	 The arm filters on the ground already exist, however. 	 It is

therefore an easy and inexpensive fix to increase the arm filter bandwidth

' to a noise bandwidth (two-sided) of 3.8 MHz, or a 3 dB cutoff value of

1.22 MHz.	 Since the increase in squaring loss incurred is negligible

when increasing B i , nothing is gained in Fixes 2 and 3 that is not also

obtained by Fix 1.

Last Fix.	 This entire discussion was based on the assumption

that the arm filters are passive. 	 In the event that it is decided to

implement the arm filters by active filters [14], then the noise band-

width of the arm filters is variable.	 For each of the arm filter band-

widths, there is a bent-pipe noise bandwidth which will cause the Costas

loop to not track.	 To overcome this difficulty, a variable lowpass

filter would be necessary on-board in front of the hard-limiter in the

bent-pipe signal processor. 	 Since there is sufficient margin in signal-

to-noise ratio that an active arm filter is not justified, we strongly

recommend that active arm filters in the Costas loop not be considered.

It clearly would substantially complicate the bent-pipe signal processing

problem.

I
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3.0	 EVALUATION OF KU-BAND TDRSS USER CONSTRAINTS

To transmit data to the TDRS, the Shuttle Ku-band return link

uses one of two selectable modes, a phase modulation mode (Mode 1) and

a frequency modulation mode (Mode 2). In either mode, the information

bearing signal is obtained by multiplexing two low data rate channels

(Channel 1 and Channel 2) and one high data rate channel (Channel 3).

In Mode 1, Channels 1, 2 and 3 are double quadriphase (QDSB)

modulated, resulting in a nominal power distribution of 4%, 16%, and

80%, respectively.

The following subsections present a comparison of the TDRSS user

constraints and the Hughes Aircraft (HAC) specifications as they apply

to Mode 1.

Since most of the degradations in Mode 1 occur in the high data

rate channel (Channel 3), the analysis is done considering this channel

as independent.

The additional effect of the QPSK modulator for the subcarrier

(Channels l and 2) is briefly treated at the end of this section.

A simplified model of the system under consideration and the

parameters causing degradations are shown in Figure 8.

For the return link services, 31 hardware parameters are con-

strained by NASA Goddard Space Flight Center. Of these, the four con-

straints that relate to,PN codes, coherent phase noise, I/Q data skew,

and short-term EIRP stability do not apply to the Shuttle Ku-band return

link.

Also, the analysis does not deal with the nine parameters listed

below:

• Parameters associated with the subcarrier oscillator (2).

@' Parameters associated with EIRP (4).

• Axial ratio for autotrack (1).

• Minimum 3 dB bandwidth prior to power amplification (1).

• Gain slope (because gain flatness yields worst-case).

• I/Q phase (applicable to QPSK only)

The remaining 14 parameters and their combined effect on an

independent BPSK channel are discussed in the next subsection.
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Convolutional
Channel 3	

Encoder	
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Figure 8. Block Diagram of the I Channel (Channel 3) With Associated Hardware Parameters
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Tha analysis presented in this section was originally developed

by STI [15-16] and was checked by Axiomatix. Using this analysis, the
i

effects on performance by choosing system parameters equal to the Rockwell

specifications or the Hughes design are discussed. The performance of

the QDSB modulation on the Ku-band return lint will be analyzed under a

follow-on effort to this contract.

3.1	 Analysis of Cumulative Effect of 14 Parameters on BER Performance

In the following derivation, the data format is assumed to be

NRZ-L.

3.1.1	 Upper Bound on 4Eb/NO for a Given User Parameter

The basis of this`BER analysis is the upper bound to the proba-

bility of error (or equivalently, AE b/NO ) below.

Let {pi} constitute a probability distribution and {u i } a set

of functions of the user parameter. The unconditional bit error proba-

bility in the presence of the user parameter degradation is expressed as

N2Eb

PE -	 Y piQ	 N ui
	 (99)

	

i=1	 0

N
P i	 1 .

i=1

Eb/ND is the bit-energy-to-noise ratio; we define

P Q 2Eb/NO 	(100)

r
Q(x)	

^
1	

exp (-t2/2) dt ;	 (101)
f 27r x

then,

Î	_exp (-(Eb/NO)D)

PE s
	 (102)

f2Tr 2Eb/N O D

where

N
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1	
N	 exp (-(Eb/N0)ui) ^

,x	

D =	 +	 )1 - 21n 2 p.	 (103)
2Eb/N0	i=1

and the SNR degradation is defined as

AE 	
< 10 log 

0 
(l/D).	 (104)

N0	1

 r

3.1.2 Application of Upper Bound to the Parameters Under Consideration

We now proceed to use the results above by taking the parameters

of interest, starting with the gain imbalance and adding one or more
parameter at a time. The resulting degradation represents the cumulative

effect of the parameters considered up to a given step.

3.1.2.1 Modulator Gain Imbalance (n)

If G is the channel gain parameter, we have

n	 G1 /G0	
Ti > 1 (arbitrarily)

where the subscripts 0 and 1 denote whether the data bit is -1 or +1,
1

respectively.

Since the average power is fixed at the modulator output,

2	 2n
_ 	 _G0 - 1+n 	 and	 G 1 - 1 +n

We now use (102) to get an expression for the probability of error:

PE _ 2 Q{ G } + 2 Q{G
thus,

N=2

2n
p l	 1/2	 u  _ 1+n

2

P2 = 1 12	 u2 = 1+n

For a nominal probability of error PE = 10-5 , EbA	 9.6 dB (these values

are used throughout this section). We can now calculate D in (103) and,

ie

F'
4
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consequently, AEb/N0.

The other parameters are incorporated and evaluated (insofar

as their impact on BER performance is concerned) in a similar fashion.

3.1.2.2 Addition of Data Asymmetry (A)

N=4

	

_ 1	 _ 2n
P I 	2	 u1 - 1+n

2

	

P2 - 8	 u2 = 1+n

1 u= ^1 - AFT—
+2n_A2n 2

P 3	 4	 3	 2/ 	 2	 1 +rj

2

	

P4 = 8	
u4 = (1 - A)F,2  - A l+n

where A is the amount of asymmetry present (A x 100 = % asymmetry).

3.1,2.3 Addition of Data Transition Time (tr)

The parameter representing data transition time is the ratio
i

of transition time to bit duration: U	 t r/T . Two cases arise:

Case A: Data Transition Time Dominates Data Asymmetry

N=6

	

12n	 2
P l	 4	 ul	

1
+n (1 - ^ l )

	1 	 2n	 2,

	

P2 = 8	
u2 = 1+n (1- 2S1)

1- 2n

1	
P3_^ 8	 u3	 l+n

	

1	 2	 2
P4	 4	 u4 = 1+n (1 RO)

P5 	 g	 u5	 1+n 
(l' 250)2

	

1	 2
	P 6 = 8	 u6 = 1+n

r-

4
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	 i

a

A/2	
2

with	 00 = 21^9 u 1	
1+

5 J^
9 u 1 +n

A/2	 2
1 5 ^^

s l = 2 9 u 1 +n 1- 5	 2n
9 u l +n

Case 6: Data Asymmetry Dominates Data Transition Time

N=4

	

P 

_ 1	 __ 2n
l	 2	 ul	 1+n

	

1	 2

	

P2 = 8	 u2 = 1+n

	

P3 = 4	 u3'= 1+p (1 -S3)2

	

1	 2	 2

	

P4 = s	 u4 = I +n (1 - 2S3)

with

A	 A_ 21 5 JT2TJ (	 ) 	
2S3n

59 ^+l+ 	 9	 2 l+	 + 9 u 1+	 \ 9 2r	 +	 1./ u / n	 5/ u 3%Z 1 n^

Usually, data transition time effects are negligible when data asymmetry

is dominant, but not necessarily otherwise.

3.1..2.4 Addition of AM/PM (^0)

The AM/PM characteristic is assumed to be linear;

10 T
0

	

^0	
=

In 10	
4.34 TO

where 00 represents the nominal AM/PM output phase at the nominal input

power level, and TO is the specified AM/PM value. T O represents the

slope of the AM/PM characteristic at the operating point.

I
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Two cases are considered:

Case A: Data Transition Time Dominates Data Asymmetry

N=6

p l = 4 u l
(vC31 -

55u cos	 0 (, S -1)] sin 400 c)2
9 u SA) cos C^0 (G 1 -1)J +

9^ Q

P2 = 8 2 = (vrG-u (G9 u sA) cos C^01 -1)^ +
lop cos C^ N-1)] s i n (^OS^) 2

9^ 0

P3 = $ u3 = G1 cos t D ( G 1 - 1)]

P4 = 4 u4 = ("GO -
5u cos 

[^O
( y6-1)] sin (^Oyr) 2

9 u YA ) cos [^O(Go-1)] + 9^ 0

P5 = g u5 = ^C- 9 u YA ) cos [^0(GO-1)] +
l0ucos C^	 (Y -1)] sin (^ Y)	

2	 ..

Q	
9^	

0 C

0

P6 = 8u6 GO cos t C 0 (G0 - 1)J

wi th	 ^ = G 1 -
A l

9u

S 6 = G1
	

1 +
2

A ^2

^
9 u
	 G

S	 =
C 1F

1 -
2

A/2
L 9u C

YA G O	 1 +

i

5.	

A/2	
j

9 u 
3G0

Y	 -6

Go 	
1 +

2

-A/ 2

9 u 
3GO

Y	 =
GO	

1 -2 A/ 2	
{

(:5

u 
►/G

ii

r
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a	
Case B: Data Asymmetry Dominates Data Transition Time

N=4

p 1 = 2
	

u 1 	G 1 cos 2 [$O (G I - 1i]

P2 $
	 u2	 GO cos2 [^O(GO- 1)]

5u cos [^ (d 1)] sin (^ b )

P3 = 4	 u3 = ^ cos [^ O (GO-1)] +	 0 
9^0

0 2

5	 A64 2

+ 9 u a 3 	 2

1
	 loll

	 [^O(s1-1)]sin NY
p4 8 	 u4 = ^ cos[ 0(G0-1)] + 	9^0

2
+ 9 S3 - Ado

with
Y	 3

8 1 = 2
0 1+G^

0

G	 G
6 2	 1 - G1

0

S 3 	G 1 cos [^ (G 1 - 1)] - GO cos [^O ( G O - 1)]

64 = G cos [^O(G1 - 1) ] + AG O  cos [^O (Go -1) ]

3.1.2.5 Addition of Remaining Phase Parameters
J

The remaining phase parameters are divided into

• BPSK phase imbalance (^ 1 )

1 is deterministic and bit dependent.

• Data transition induced PM (^, 1 ) ; Spurious PM (Y
Phase noise (noncoherent) 	 3 )	 + '2 + x'3	 2
^2 is random and bit independent.

d

I'
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Phase offset due to carrier frequency instability (3)
A	

$3 is deterministic and bit independent and is given by
i

27rOf
^3 = K 

where of is the frequency instability term and K  is the

receiver loop velocity gain (KL =106).

Again, two cases arise:

Case A Data Transition Time Dominates Data Asymmetry

N=6

	

p l = 8
	

u1	 = Gl cos t [ ^O ( Gl - 1 ) + ^c + ^31

	

F2 = 
4	

u 2 = ( 1 - 9 u 6A^ cos [^O ( G l - 1 ) + ^c + $31

'r 	5µ cos 
N(%- 1)

 + ^c + ^3 1 sin ( ^OSC) 2Y	 +	

9^0

F 3 	 8	 u3	 (vGl - 9 W OA) cos [^O ( G l - 1) + ^c + 31

10U cos [YOB- 1) + ^c + ^ 31 sin (^ORC) 2
+

9^0

	

P4 = 8	
u4 = GO cost [^O(G0- 1) - c + ^31

	

F5 = 1	 u5	 ( /rGO 9u YA^ cos [^O(GO 1)	 c + ^31

51j{cos NN-1)+ 3 ] sin NYC- d +cos (^3 -h) sin (^c)} 2
I	 +	

9^0

	

F 6 8	 u 6	 ( 3 	 0 P YA) cos [^O (G O - 1) - ^c + ^31

l0U{cos [$0(YB-1)+ 3 ] sin (^ OYC-^c )+cos (c3-^ O ) sin (^d 2
•	 +	

9^	
l

0
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^1 with	
^c = 2 + ^2

and	
OA' %!' SC' YA' YB' yC as given in Case A of 3.1.2.4.

Case B: Data Asymmetry Dominates Data Transition Time

N=4

pl	
2
u 1 = G 1 cos2 [^o(Gl - 1) + c + X31

P2 	 1	 u 2 = GO cos 2 [$o(Go - 1) - ^c + $31

P3 = 4 u 3 = 0 cos [Oo (Go 1) - ^c + ^3 ] + 9 u d3 - 2 a4

5u{cos [0 0 (6 1 -1)+^3] sin 00 6 2 -0c )+cos (^3-00) sin (^c)} 2
+	

9o0

P4 = 8 u 4 = VG--O  cos [^0 (G0 - 1) - ^c + ^3 ] + 9 P 63 - A 64

+ l0u{Cos [Y 6 1 1) "3	 01 sin (^ s 2- ĉ)+cos ( ^3-h) sin (^ )} 20	 c

9^0

where	 619 62 , 6 3 are defined in Case B of 3.1.2.4

and	 63 = G1 cos [ ^0 ( G l - 1) + ^c + X 3 1 - Go cos [$0(Go - 1) - ^c + X31

64 = T cos [^0 ( Gl 1) + ^c + X 31 + /GO cos [^ 0 (Go - 1) - ^
c 

+ X31

3.1.2.6 Addition of Data Bit Jitter (AD)

(AD x 100	 peak value)

Data jitter is the random component of data asymmetry specified

as being less than some peak value (in %). The results of 3.1.2.5

apply, with each A replaced by A+ 
AD 

in every u i .

3.1.2.7 Addition of Gain Flatness (G f ) and Phase Nonlinearity (b)

Again, the results of 3.1.2.5 apply, with the following

modifications:
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For each p i , we associate p ij (j= 1,2) such that

p il	 p it	 pi /2'

Similarly, for each u i , we associate

2

u il - r +^(a2 + b ^2

2

u12 = (Yru - , (a2 + b2)/2

and, in the expression for D. the sum over N is replaced by the double

sum below:

N	 2	 exp (-(E b /N 0 ) u i j)
I	 X p

i=1 j = 1 ^^	 u
Ij

Gf - 1
and	 a = G f + 1 .

3.1.2.8 Addition of Incidental AM (m)

(m x 100 = m%)

The results of 3.1.2.5 apply, with each u i multiplied by

1

3.1.2.9 Addition of Spurious Outputs (Ps)

The results of 3.1.2.5 apply, with each u i multiplied by

1
I + 7T Eb/N0 PS

where Ps is the ratio of total power in the spurs to the desired signal

power.

3.2	 Computations and Discussion of Results

The results of Subsections 3.1.1 and 3.1.2 were numerically com-

puted and are presented in Table 1. Each degradationrepresents the

I

11

i
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Table I. Comparison of TDRSS User Constraints and HAC Specifications With Corresponding Degradations

Cumulative
Degradation

Cumulative (dB)
TDRSS User Degradation HAC

Parameters Constraint (dB) Specification u> A A > u Comments

Modulator Gain
Imbalance (fl) 0.25 dB 0.017 0.5 dB 0.067 0.067 Peak

Data Asymmetry (A)
o

3/ 0.224 3
0.508

0.303

Data Transition (u) 50̂ 0.251
3% 0.497
5% 0.324

AM/PM (TO ) 100/dB 0.258 50/dB 0.327 0.570 00= 4.34 TO

Modulator Phase 30 50
Imbalance	 (ca l _) 1	 Peak

Data Transition 30 30 At transi-

Induced PM (0 1 ) tion density

0.407 0.481 0.647

= 100%

Spurious PM (iP 2 ) 20 20 RMS

Phase Noise 1 Hz- 10 Hz <_ 15° 1 Hz -1	 kHz <170
Noncoherent (^3 ) 100 Hz- 50 MHz < 2 " 1 kHz - 50 MHz <3 0 RMS

Frequency Stability 3 x 10-7 3 x 10- 7 48 hours
(03 ) lAverage time

Data Bit Jitter (AD) 0.1% 0.410 2% 0.563 0.878

Gain Flatness	 (Gf ) 0.3 dB 0.3 dB
±70 MHz

0.551 1.042 0.922
Phase Nonlinearity (b) 30 70 Peak

Incidental AM (m) 5% 0.556 5% 1.047 0.927 Peak

Spurious Outputs (P s ) -30 dBc 0.684 -50 dBc 1.054 0.933 Within
Data BW

*See text

rn
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addition of one more parameter or a group of parameters. The effect of

.a
	 the phase parameters is substantial because the analysis treats them

as a single composite term.

For noncoherent phase noise, ^3 , the smaller specification was

used for computations because the tracking loop bandwidth will certainly

be greater than 100 Hz and all phase noise below that range will be

tracked out. Using the higher specification would result in a degrada-

tion of 1 dB greater than the tabulated value.

For the parameters associated with data bit timing (asymmetry,

transition time, and jitter), the HAC specification of less than or

equal to 10% is for a composite asymmetry which includes transition

time and jitter as well:

A+u+Ap _< 10%,

where A = asymmetry (steady-state)

A0 = jitter

u = tr/T , with tr = (0-90%) transition time and T = symbol time.

The computations for the HAC specifications were done for both

cases, namely, data asymmetry dominates data transition time (A> p) and

vice versa.

Where p> A, the impacts of p= 5%, A= 3% and Ap = 2% are presented

in Table l; also, the effect of varying A is shown graphically in Fig-

ure 9 (the results are relative to a gain imbalance of 0.5 dB).

figure 10 shows the effect of varying A on the cumulative degra-

dation (relative to p= 5% and A0 = 2%); it can be seen that the two curves

have approximately the same slope except at the high values of A where

the individual impact is more pronounced than the impact in combination.

When A > p,- the resul ts for A 5%, p = 3% and AD= 2% are tabulated;

varying p (relative to A= 5%) was found to have no appreciable effect._

From Table 1, we see that, in the case where data transition

time dominates data asymmetry, the combined impact of gain flatness (Gf)

and phase nonlinearity (b) is substantial and a net difference of 0.37 dB

exists between the user constraints and the HAC specifications.
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Figure 9. Variation of Degradation in SNR as a Function of Asymmetry When
Data Transition Time Dominates Data Asymmetry

(Relative to n= 0.5 dB)
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Figure 10. Variation of Cumulative Degradation in SNR as a Function of
Asymmetry When Data Transition Time Dominates Data Asymmetry
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In the ,case where data asymmetry dominates data transition time,

the impacts of asymmetry (A) and data bit ,jitter (A D ) are substantial, and

the net difference between the constrained values and the HAC specification

is 0.249 dB only.

Possible trade-off considerations can be based on these numbers.

3.3

	

	 Degradation Introduced by th QPSK Modulation for the
Subcarrier Channels I and 2

We now consider degradation due to the subcarrier modulator.

The procedure here is similar to that of Subsections 3.1.1 and 3.1.2 and

differs only the expressions of the probabilities of error.

The parameters considered are:

• Modulator gain imbalance (n)

• BPSK phase imbalance (^I,^Q)

• I/Q phase imbalance O.

The effects of these three parameters are derived in combination.

Let n denote the I/Q gain imbala;,ice from nominal, G I and G  the

I and Q channel gain parameters,
i

GIl - nIGIO	 T11 > 1 (arbitrarily)

GQl	
nQ GQD	

nQ > 1 (arbitrarily)

T1 	 -n represent the individual channel gain imbalances and the sub-	 :1

scripts l and 0 denote whether the,data bit is -1 or +1. We have

r = A /A
Q I

G
2
	G	 = 2nI

10	 1 + nI	 Il	 1 + nI

_.
GQ	

Z	
G

- 2pQ
0 - 1 + 

TIQ	
Ql	 1 + 

nQ

k

.	 l
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i

For the I channel (Channel 2):

N=4

PI = 4 ul	 = (VG--Il  C 1 - r n^ S l )2

P2 = 4 u2 = 3G 11 C 1 + r n SO)2

P3 = 4 u3 = (AG—jo C0 + r n SJ)2

P4 = 4 u4 _ 3 C O - r SO )2

where	 C O = cos 2 - 2 + 'e)

C = cos (21  + 2I + ee )

S
0

= sin ( 21+ ̂2
e
e)

S l = sini 12 _ IQ - eel

and	 ee = 4 Le^,^(rv-	 - e4(r,0)]

with

e4 (r;$) =	 tan-1

^r2	 -
2 ) sin 2^ - 4(r _1-1 ) cos

4(r+ r	 ) sin	 - 6

- r

(r + r	 ) cos 2^ +

Similarly, for the Q channel 	 (Channel 1):

N4

p l = 4 ul	 = (r n^ C lS1)2- ^

F2 = 4 u2 = (r n^ C l + IG—jo Se)2

Ib

A
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P3 = 4	 u3 = (r n O ^0 + All S1)2

P4 = 4	 u4 = (r n 
0 C0 + ^ S 0 )2

where C0 = cos 12 + Q - 
ee)

IQC1 = cos (: - -2 - ee)

S0=sin(2- 2l+ee)

A
S1 = sin (2	

T
+ 	2 + ee) .

An example computation was done for the I channel when

n i = nQ = 0.25 dB

Y=^Q=3°

r=OS.

A degradation of 0.08 dB resulted from the parameters in combination.

The results presented above for BPSK and QPSK modulations will

be extended to QDSB modulation in order to get the exact cumulative

degradation for the Shuttle Ku-band return link in the follow-on effort.
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4.0	 S-BAND TDRSS GROUND STATION FALSE LOCK EVALUATION

.l.

For the Shuttle-unique S-band demodulator, Motorola has proposed an

active arm filter I-Q loop in which the carrier tracking loop and the bit

synchronizer are interactive. Furthermore, following the integrate-and-dump

(I.9) arm filter, the in-phase channel is hard-limited before multiplica-

tion with the quadrature phase arm filter output. This type of loop is

referred to as a decision-directed (or polarity-type) I-Q loop. While

the polarity-type I-Q loop provides a simpler implementation of the multi-
6

plier (especially if it is implemented by a digital multiplier as is pro-

posed by Motorola), the false lock susceptibility of the Costas loop is

drastically changed. This section summarizes the results of an evaluation

of the Motorola-proposed loop in teems of its false lock susceptibility.

The true lock tracking behavior of I-Q and decision-directed I-Q

loops is well-documented [8,17]. The term "true lock" refers here to the

situation where the loop locks up with the VCO frequency identical to that

of the input signal. It is also possible to lock up a Costas or I-Q loop

when the VCO frequency is offset from that of the input signal. This sit-

uation is referred to as false lock and, depending upon the particular

loop configuration, can arise from data-dependent and/or data-independent

causes. Data-dependent false lock or false lock to a data sideband has

recently received considerable attention in the literature [18-25]. In

particular, it has been shown that, for Costas or I-Q loops, false lock

to a data sideband occurs when the frequency difference between the VCO
(s

and the input signal is an integer multiple of half the data rate. When

the I-Q loop is of the decision-directed type, then a data-independent

type of false lock occurs which is quite different in behavior than the

data-dependent false lock discussed in [18-25]. This data-independent t

type of false lock has previously been observed in the data-aided loop

[26] which was implemented as a sampled-data version of a decision-directed 	 #'

I-Q Loop similar to `,ie proposed Motorola loop.

In this section, the theory is developed for the false lock

tracking behavior of decision-directed I-Q loops of both the continuous

(integrate-and-dump arm filters followed by sample-and-hold circuits) and

the sampled data (sampled phase detector outputs and accumulator-type arm

filters) types. The results for the latter type are compared with the

experimental results for the data-aided loop [26] and shown to produce

good agreement.
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4.1	 Continuous Loop Model

We begin our analysis by considering the continuous-type decision-

directed I-Q loop illustrated in Figure 11. By "continuous," we refer

here to the fact that the in-phase and quadrature phase detector outputs

are continuously applied to the integrate-and-dump arm filters as opposed

to sampled versions of these outputs as would be the case in the sampled

data I-Q loop to be discussed in the next section. The input signal

s[t,e(t)] is assumed to be a biphase modulated carrier of the form*

s[t,e(t)] = 2S m(t) sin [wot + e(t)]	 (105)

where S is the average signal power, m(t) is a binary modulation (a ±1

digital waveform) with arbitrary statistics (for example, it could be ark

all +1 or all -1 sequence which are equivalent to no data at all), w 0 is

the radian carrier frequency, and e(t) is the received carrier phase.

For the true lock case, the in-phase and quadrature reference

signals rs (t) and rc (t), respectively, would be given by

rs (t) = V2_ K1 sin [w0t + 6(t)]

rc (t) = r K 1 cos [w0t + 6( t )]	 (106)

where 6(t) is the VCO's estimate of e(t) and K 1 2 is the reference signal

power. In the false lock mode, one would have

r s (t) = r K1 sin [(wg - wf)t + 8(t)]

rc(t) = 12— 
K.i 

cos ENO - wf )t + e(t)]	 (107)

where w  is the false lock radian frequency as yet to be determined.

Denoting the in-phase arid quadrature phase detector (multiplier)

gains by Kip, then using (105) and (107), the output e c (t) of the quadrature

phase detector is (ignoring second-harmonic terms)

*
To illustrate the false lock phenomenon in a simple, clear man-

ner, the analysis presented here assumes the absence of additive noise
at the input. The additional complication introduced by including the
effects of additive noise can be handled in a manner analogous to the
development in [20].

r
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I'
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Figure 11. A Continuous-Type Decision-Directed I-Q Loop
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ec(t) = Km s[t,e(t)]
	

K1 cos [( w0 - wf )t + e(t)]

= K1 Km VS7 m(t) sin [w ft + ^(t)]

while the in-phase arm phase detector output is

e s (t) = Km s[t,e(t)] 32 K1 sin [( w0 - wf )t + 8(t)]

= K 1 Km A_ m(t) cos [w ft + ¢(t)]

where ^(t) 0 e(t) - e(t) is the loop phase error.
The digital modulation m(t) may be represented as

00m ( t ) =	 I	 a  p ( t - kT)
k = —

where ak = +_l, is the data symbol in the kth symbol interval kT
and p(t) is the symbol pulse shape corresponding to NRZ coding,

1	 T; 0< t<
P(t) =

	

	
_	

(111)

10; elsewhere

Thus, after lowpass filtering with the in-phase and quadrature phase

integrate-and-dump arm filters, the corresponding sample-and-hold out-

puts become, respectively,

CO	 [	 kT

Y S (t)	 K1 Km ^ k = -. ak-1 
p(t-kT) T j 

(k-1 )T 
cos (w ft+f) dt

K 1 Km /S__	 X	 ak-1 p(t-kT) 
[W fTsin (wfkT+^) - sin (wf(k-1)T+

k = -00

and

CO	 kT

yC(t) = K1 KM 3S_
k- 

X- CO 
ak-1 p(t- kT) ( T 

J (k - 1 )T
sin (w f t + ^) dt,

.K 1 Km vS_ X	 ak-1 p(t-kT) w1T {cos ( wfkT+ f) - cos (wf(k-I)T+^)}] (113)

	

k = -^	 L f

NRZ coding is assumed throughout this section, since, for this
case, the integrate-and-dump filters of Figure 11 are equivalent to
matched filters. The results presented for NRZ, however, are exactly the
same as for Manchester coded data when the pulse shape is included in the
integration circuit.
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r	 ,

a Passing ys (t) through the hard limiter results in

z s (t) A sgn [YS(t^

	

OU	 [a

	

I	 p(t-kT) sgn 
WfT 

^sin (wfkT+ ^) -sin ( wf ( k -1)T+ ^^ }
k = -^	 f

	

= sgn	 1 t-kT) sgn a	 sgn	 k -1)T+
w T	 ^	 p(	 { k-1}	 sin wg f	 ( fkT+ ^) - sin ^ w f ( 	 (114)f	 k = -

Finally, multiplying (113) and (114) gives the loop error e(t),

namely,

	

e(t) = yc (t) z s (t) _ -K 
Km(w1Tl	

Ak p(t - kT)	 (115)

f	 k = -.

where

Ak 4 [cos (wfkT+	 cos (w f (k-1 )T+ ^)J sgn [sin (wfkT+	 sin (w f (k-1 )T+ ^» (116)
A

and we have also made use of the fact that

	

a k-1 sgn 
[a

k-1] - i a k-1I - 1
	 for all k	 (117)

We note that e(t) is totally independent of the data sequence {a k}.?

Recalling the trigonometric identities
3

	

sin A - sin B = 2 sin ( A2 6) cos (L	 ,;11 ''J 

cos A - cos B	 -2 sin 
(AjB) 

sin A2B	 (118)

the expression for A,, in ; g ib) simplifies to

w	 \	 /	 1	
^;

	

^. k = -2isin 2
T
)Isin C\k- 1 w

fT+	 sgn cos[tk- 2^ wfT+^^	 (119)

	

'	 If the loop is to false lock at a given frequency offset w f , we

must demonstrate that the time average of e(t) denoted by <e(t)> produces
G

an S-curve (an odd function of ^) about some steady-state phase error

	

Y	
value, say fi g . Thus, equivalently, we must examine the conditions under

which

4
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;^

mfT

`e W> =
sin

T

n
1im	 (^	 X	 sin 1(k- 2) wfT+-wK 1 Km^ f

2
n -} co	 k= -n

x sgn	 cos { ^k - 2) w fT+^ (120)

is nonzero except where 	 _ ^0.

The approach taken here is to expand the function sin a sgn [cos e]

in a Fourier series and evaluate the limit required in (120) for each term

in the series.	 Thus,

f 4sin a sgn	 [cos e] =	 (sin a) ZQ+	 cos r(2 z+ 1)e]
L	 Z = 0	 J

R	
sin	 [(2Q+ 2)e]	 - sin	 (2ze)}2	 1 2Q(	 +)1 (121)

k=0

Letting m= Q,+ 1 	 in the first summation in (121) and then combining the
two summations yields

2	
CO

sine sgn [cos e]	 _ -	 X	 (-1)m [2m1 1 + 2m+ l sin	 (2me)
3

^ M= 1

CO
_ 4

	(_1 )m-1
	

2m
s in	 (2me) (.122)

IT m=1	 4m	 -1

Letting	 a - 
\k - 

	 W.FT + ^ i n	 (122), then (120)	 becomes

w fT
<e(t)> _

sin	
_2	 _ 4 	 m-1	 2m

)K K F
1m

WfT
7	 m= 1 (	 4m2 _ 1

2

n 

x	 n imp (-Zn+l}	 I	
sin	 j(2k-1)mwfTj j 	cos	 (2m+ )2 k = -n

( n
+C Jim t2n +1^	 cos	 j(2k-l )mw fTjI	 sin	 (2me) (123)

n -->-co	 k= -n

i
I^`



	

I'.	 The two limiting sums in (123) are evaluated as follows:
-A

n
lim	

n+1)	 sin [(2k-1)mwfT] = 0n-} ao	k= -n

w	
1	 n	 I	 n

lim 
(2n+1)	

cos [(2k-1)mwfT] = lim n I	 cos [(2k-1)mwfT]
n-} co	 k= -n	 n -^- oo	 k= 1 i

1	 sin 2n mwfT
lim 2n
	 sin mwn }C

-1; m1w fTl= jmw, jm an odd integer

+1; m 1 w fT I = j m7r, jm an even integer	 (124)

0; otherwise

Thus, <e(t)> of (123) will be nonzero only when
ti

	

-	 ,wfTJ = Yn	 (125)
R

where Y is a rational number. Equivalently, if o f Q wf/27, then the

i false lock frequencies (in Hz) relative to the nominal VCO carrier fre-

quency can potentially occur at any rational multiple of half the data

rate, i.e.,

(( 1
f	 I Af I = Y 12T)	

(126);
x:

Substituting (125) and ( . 124) into (123) gives and expression for the false

lock voltage (normalized to the loop gain), namely,

<e(t)> _ sin (2) 4m-1 _ ) my	 2
( 1)	 (1)	 sin (2mfl	 (127)

K 1 Km^	
2	

{m}	 4 - 1

3
where {m} is defined as the set of integer values of m such that may= jm

	

f;	 j^ any integer (different for each m).

pith regard to the values of -y, two distinct situations can occur.

Either Y is itself an integer or can be expressed as a ratio of integers

p/q, where p and q are relatively prime.

J

4

I°
J



70

4.1.1	 y = n (n an integer)

When y = n, the set {m} such that mn = jm , jm any integer, clearly

contains all the positive integers. Thus, for this case, (127) simplifies
to

<e (t),> =	
sin (2	 4	 (-1)m-l (

)mn	 2m	 sin (2m^}
K 1 KmF	 2	 Tr m=1	 4m2 _l)

-(n } 4	 ^m	 sin (2m^)	 n odd
=	 m=1 4m - 1	 (128)

0	 n even

To see how (128) can be put in closed form, consider the Fourier series

of the function cos	 sgn [sin ^], namely,

cos ^ sgn [sin ] _ (cos ^) 4 ^ \2^,+1} sin [2R+1)^]
k-0

T 
QX0 

\2Q,+1^ {sin [(2R+2)^] + sin ( 2k^)^	 (129)

Making similar shifts of the summation index to those employed in deriving

(122) from (121), we obtain the desired result

cos	 sgn [sin ^]	
4	

Zm	 sin (2m^)	 (130)
Tr m=1 4m - 1

Substituting (130) into (128) gives the false lock behavior of the con-

tinuous decision-directed I-Q loop at frequency offsets (relative to the

nominal VCO carrier frequency) which are integer multiples of half the

data rate, namely (see Figure 12a),

<e(t)> = S - 2 cos ^ sgn [sin ^]; 	 n odd	
(131)n7T

K1 Km'rs-	 ' 0 ;	 n even

r

;e

s

k
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<e(t)>

Figure 12b. True Lock S-Curve
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<e(t)>
K_ K

t'

Figure 12a. S-Curve for False Lock at n th Multiple
of Half the Data Rate (n/2T)

N
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To compare this behavior with that corresponding to true lock

x (of = 0), we recall [17] that for true lock (see Figure 12b)

<e t >	 =	 sin ¢ sgn [cos 0]	 (132)
K 1 KmYrS-

Thus, we observe from (131) and (132)  that the false lock S-curve is

merely a 90° phase shift of the true lock S-curve and its slope at the

lock point (±n7r/2, n an odd integer) is 2/n7r times that of the true lock

S-curve at its lock point (±nfr, n an even integer including zero). 	
i

4.1.2	 y = q (p and q relatively prime)

When y= p/q with p and q relatively prime integers, the set {m}

4 [see (127)] such that mp/q =jm, jm any integer, clearly consists of the
integers m = kq;	 z = 1,	 2,...	 Thus,	 for this case, (127)	 simplifies 'to

<e(t)> -	 sine,	 4	 °°	 _l Qq-1	 -1 ^,p
	 (4-^) sin 2Q	 133(	 )	 (	 )	 (	 q^)	 (	 )^	 Tr2-

K I Km^	 2q=1	 aR q	 1

i
Some specific cases of (133) are now worthy of examination.

Case 1.	 q even,	 p arbitrary

If q is even and p and q are to be relatively prime, p must be odd.

Thus,
(-1)^,q-1	 =	 -1

(-1) 1-1 = (4	 (134)

and (133)	 further simplifies to

i

coIsin(^)<e(t)>	 _	 4	 z 1	 2^q
(-1)	 sin	 (2QgO)	 (135)

'
4Q2 

2	 1K K	
7r Q^1	 -9=1

1 m	 2q

k

To put (135) in closed form, we examine the periodic function

(Figure	 12)

;V f(^) = sin (	 - q(M2)	 q	 `<	 <	 M + 2l 
Tr

Tr

y

m =	 0,	 ±l,	 ±2,	 ....	 (136)

I

x•

'r
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Since the period of f(o) in (,136) is 7r/q, it has the Fourier series

CO

	

c R exp [j(2kgo)]	 (137)
R=

where the Fourier coefficients c k are given by

c Q = 9 I 

2q 
f(o) exp [-j ( 2Rgo)] do	 (138)

7
_ 2q

Substituting sin 0 for f(o) in (138) and carrying out the integral eval -

uation yields

c p 	fL (_W" sin (2q	 2 2 1J 7T ) [4Q q	 11

C -9, 	 cR

c 0 = 0	 (139)

where the asterisk denotes complex conjugate. Substituting (139).into

(137) and combining complex conjugate terms gives

f(f) = 2(
sin (:21)	 (-1)Q

2q	

-1	 2^q	
l sin(2Qq^)	 (140)

7T 	 R=1	 (4^,2g2 - 1 J

Comparing (135) with (140) gives the desired result:

<e t> _	 2	 sin(	 I	
1 1(per)	 7rf(^)	 (4 )

K 1 Km^	 sin(
Eq

where f(f) is the normalized S-curve defined in (136) with unit slope at

the lock points o = 0, ±7T/q, ±2fr/q,... Note that, while the slope of the

unnormalized S-curve of (141) depends on both p and q, the shape and _per-

iod of it depend only on q as per (136). Further note that, if p= 1, in

which case the false Lock frequencies occur at O f = 1/2qT, the slope of

the S-curve from (.141) is 2 /7r times that of the true lock S-curve at its

lock point, independent of the value of q. Thus, insofar as false lock

signal strength is concerned, all of these lock points are equally strong.

T.

f
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MA

However, since the period of the S-curve decreases as 1/q with increasing

q, the tracking region (-7T/2q< ^<Tr/2q) becomes smaller and smaller as

the false lock frequency comes closer and closer to the nominal carrier

frequency w0 . Therefore, while indeed a stable false lock point theo-

retically exists (in the absence of noise) at any value of q regardless

of how large, any small amount of phase noise associated with either the

transmitter oscillator or receiver VCO will cause the loop to cycle slip,

thereby preventing, in practice, false lock from occurring too close to

the true lock frequency. A quantitative evaluation of the false lock

points to external perturbations (e.g., additive noise, phase noise, oscil-

lator instabilities, etc.), and the manner in which the loop acquires

lock in the neighborhood of these points, can only be had by a careful

study of the phase plane trajectories associated with the loop. Such a

study is not the subject of the present report but is indeed important

in order to obtain a complete picture of the false lock behavior of

decision-directed I-Q loops. Without such additional analysis, our dis-

cussion must be somewhat qualitative and restricted to only tracking

f	 behavior once the loop has indeed false locked. Nevertheless, as we have

already observed, a great deal of insight can still be gained from the

limited results presented here.

Case 2. q odd, p arbitrary

{

	

	 If q is odd and p and q are to be relatively prime, p can be

either even or odd. When p is even, the following simplifications of

(133) occur:

1)Qq-1 =

(- 1 ) 1-p = 1	 (142)

Using (142) in,.(133) results in an expression identical to (135). Thus,

for p even, the false lock behavior is characterized by (141) 	
r

When p is odd, we have

-1)^ p = (-1 ) Q	(143)

and (133) becomes	
f
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A

< e(t) > _ -	
s 

n `2^	 4	 Oro	 2—_P g___ 1 sin(2Qq) (144)
K l KmA	 R,=1	 4^,2 g 2 - 12q

Letting ^ = 4^ + 2q
	

and recognizing that

i^
sin(2zq^) = sin ( 2kq(p ) cos7Tk + cos(2Rq^) sinnz

=	 (-1)
k
 sin(2zgo) (145)

we can rewrite (144) as

<e(t)> 	 4 00 	 2zq
(_1)	

sn(2Qqo) (146)
K K vs	 p	 qQ1	 4^2 2_ 1

1	 2qm

Comparing (146) with (135), we can immediately conclude that, for p odd,

<e(t >	 (2	
sin

\p^)	
f(^	

2q)
(i47)

K I Km	 sin V2q)

which has stable lock points at	 _ t2—q, ±2q, ±2q,	 Furthermore,

7

note

that the slopes of the false lock S-curves at their lock points are the

same for q odd as for q even.

4.2	 An Alternate Form for the Normalized S-Curve f(¢)

An alternate form of the normalized S-curve f(¢) defined in (136)

will	 now be derived.	 The purpose of this exercise is to show the rela-

tion of false lock tracking in decision-directed I-Q loops for biphase

modulation [see (105)] with true lock tracking in decision-directed I-Q

-loops for polyphase modulation or, equivalently, M-ary PSK [27].

Once again, we must first separate our considerations into q even

a and q odd:

4.2.1	 q even

Consider the function
'	 q-1

g w = q	 I	 sine+(2i+1) T	 sgn	 cos k+(2i+l) Cq j } (148)
i =0 	 J
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which is periodic with period Tr/q. For '0' < w/2q, we would have sgn O = 1
a	

for the first q/2 terms and sgn O -1 for the remaining q/2 terms; thus,

2 -
1

q-1

g w = q	 I sini^+ (2i+1)2q] - I sin[ + (2i+1 )yi =0 	 `	 i=2l

Letting R = q-1-i in the second summation and recognizing that

(149)

sin -+- (2i+1 )7T	 = sin ^^+ (2q-2z-1 )2q

= sin (^+Tr-(2z+1)2,	 (150)
l	 q

we obtain after combining the two summations

g -1
2

9wq sin [+ (2i +1)2g1 - si n [ +Tr- (2i+1)2q 	(151)
i-0	 l	 1

Trigonometrically expanding the sine functions in (151) gives

l g -1g (fl -	 1 L 0 f cos ((2i.1-1)2q) - cos (T -(2i+1)2q), sink
^-	 L	 `

p

g .1	
r 

_+ Tri 	 sin	 _(Tr (2i + l 'r	 cosh
i0	 f

9	 J
2

-1

= q I cos((2i+1)2q)1 sink
[ i=0

_	 1	
sink	 (152)

q sin (9)

Comparing g(f) of (152) with f(^) of (136) (for m= 0), and the fact that

both g(f) and f(fl are periodic with period ff/q, we immediately see that

for all ^,



	
.A..^.....-.mow., ^--•--- -^-_. -,.
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f	 q sin ( 71 ) g(^)
2q

q-1
sin 

(T7	
sin[ + (2i+1)'T sgn cos J^+ (2i+1)'r

	i=0	 t	 lL

(153)

4.2.2	 q odd

For q odd, we consider the function

q-1

g (^) = 9 sin + q) sgn cos( + 7t	 (154)
i=0

which is also periodic with period rr/q. Following steps similar to those

in deriving (152) and'(148), we obtain a result identical to (152); thus,

once again, for all ^ and q odd,

f(fl = q sin (2q) g ( )

q-1
`sin (^q,^ 

i^0 
sin( +, sgn cos^^ + q }	 (155)

lL

Careful examination of Figure 5 of [27] (the large signal-to-noise ratio

approximation of the MAP esti:ation receiver for M-ary PSK) reveals an
)a

	S-curve of the form (153) or (155) where the number of phases M is equal	 fi!t
to 2q.'

4.3	 Sample d Data Loop Model a

Consider the sampled data type of decision-directed I-Q loop

proposed by Motorola as illustrated in Figure 13. Here, as contrasted

with the continuous loop of Figure 11, the phase detector outputs are

sampled at a rate Rs 111's, and input to accumulators (the sampled data

equivalent of integrate-and-dump filters). Each accumulator sums a num-

ber of input samples corresponding to the number which occur in a symbol

E	 time. For simplicity, we shall assume that the ratio of sampling rate

to symbol rate is integer, i.e.,

T

T	
- M	 M integer	 (156)

Ts



Ow

s

Figure 13. A Sampled Data Type Decision-Directed I-Q Loop
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so that M also characterizes the size of the accumulators. The outputs

of the in-phase and quadrature accumulators (which occur at the symbol

rate) are sampled and held with the remainder of the loop operating as

previously discussed for Figure 11.

Starting with the phase detector outputs of (1.08) and (1.09) and

the characterization of the digital modulations given in (110), we can

express the sampled versions of these signals by

0

e ©(t)	 c^(t) Y 6(t-nTs)
n=-co

0	 kM
K 3S I a	 j	 sin(w iT +} 6(t-iT )

	

l Km	 k=-00 k-1 i = (k-l)M+l	 f s	 s

W

cQ(.t)	 cs(t}	 E b(t+-nTS}
k=-

_ m	 kM

K1 Km 3
Sak-1	

cos(wfiTs + ) 6(t-iTs)	 (157)
k=-.i=(k-i)M+l

9

Thus, after in-phase and quadrature accumulation, the corresponding

sample-and-hold outputs become, respectively,

	

_	 kM

	

Y s (t)Kl Km VS	 ak-1 p(t-kT) M	 ,	 cos(wfiTs+ ^)
kk=_00r= N

_ 
)M+1	 j

W

yc (t)	 K1 Km f	 ak_1 p(t-kT)	 sin(wfiTs+ )	 (158)
k=-CO	 i=(k-l)M+1

Passing y s (t) through the hard limiter and multiplying by y c (t) gives the
loop error signal e(t), namely,

CO

e(t) = yc (t) z s(t)	 Ki I''M	 co
	 p(t-kT)	 (159)

I'.
where

0 1
	 kM	 1	 kM

B k = M	 I	 sin(wfiTs+^} sgn	 cos (wiTs +¢)	 (160)
i = (k-1)M+l	 '	 i=(k-1)M+1	

f

f

^E

t'r

C
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Letting Q = 1 - (k-1 )M, the suns in (160) are evaluated' as follows;

kM	 M

sin(wfiT s+) _	 sin wf 
M 	

+(k-1 )M) + ^1

i=(k-1)M+1
=1	 J

M	
fsirs 1k
w
f M) cos ^¢ +(k-1)wfT)

=1

M

+	 cos \ kwf ^) sinC^+(k-1)wfT)	 (161)

Since

M	
T	

sin (MMl) w 2T

f	

sin 
w 2T

sin (ewf M) 

sin 
wfT

(2M

a

	

	 T l 	cos f((M+1 wfT sin wfTM
cos kw — =	 L1 M)	 ( —2)—

R	 w=1	 ^ f M1	 T	
(162)

f
sin 2M

i
then, substituting (162) into (161) and combining gives

w T
lkM	

sin ( 2 /M+l If T

	

sin (wfiTs+o) =	
w 

T - sin (—M } 2— +	 +(k-1)wJ	 (163)
-	 J

	

i=(k-1)M+l	 sin C 2fM

Similarly, it can be shown that

kM
w T

sin	 2 	 wfT
cos (wfiTs+) _ . 	 cos

 j(
M+l
 
M) 2 +
	 +(k-1)wfTj	 (164)

i-	 f	 Jk	 (k 1)M+1 s ni=P	 2M

r

I
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Thus, substituting (163) and (. 164) into (. 160) gives the desired result

wfT

	

- 1 sin	 r /M+1 wfT

B k M	 w T	
stn " M) 

2	
+ +(k-1 )wfT]

	

sin	 f	 t \
( 2M

/	 T
X sgn cos 1( MMl) 

w 
2 + ¢ +(k - 1)c^ fT]	 (165)

Once again, to demonstrate the false lock behavior of the loop, we must

demonstrate that there exists a frequency w f at which the time average

of the loop error signal-produces a'n S-curve about some steady-state

phase error value. Thus, equivalently, we must examine the conditions

under which

wfT
^	 sin	 n<e t) _ 1	 2	 1 im Gn 1 1	 sin	 k-1 + M+l w T+

K— 	 M	 wfT n }^	 +—I 1 k n	 2M) f
1 m	 sin(2M )

x sgn i cos {k-1 + I+—M)1 w T+ f	 1
J

(166)

r.

is nonzero except at the lock point ^= ^ O . Letting e = (k-1+ (M+1)/2M]w fT4-

in the Fourier series for sin e sgn [cos e] (see (122)), then (166) becomes

wfT

re t	 = 1	
sin (

2 ?	 4 m-1 2m

4m2 - 1)K K ^	 M	 `^fT	 itI )m	 sin(2M m=l

n m w fT

x	 lim j —1+1`2n^ sin 1(2k-l)mwfT] cos [2m^+	 M	 ]n -} es k=-n

/ n _ mw fT
+	 }fill	

t2n+1^ n	 cos (2k-l)mw T sin^2m^+	 M	 ]	 (167)
n k=-n J

Since the two limiting sums in (167) are identical with those in (123),

then using their evaluation in ( . 124), the conditions for false lock for

the sampled-data loop are identical with those for the continuous loop

r

9
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[see ( . 125) or (126)]. Thus, analogous to (127), the false lock voltage

(normalized to the loop gain) is given by

^r

<e t)> = l sin 2 _

 4-	

1(-1)mY 2m	 sin[2m + r^((	 )	 168

KlKmA h1 sin^2M
	 {m}	

4m2 1	
2M

where again {m} is the set of integer values of m such that my = im, im

any integer (different for each m).

Comparing (168) with ( .127), we observe that the two results are

quite similar except for two basic differences. First, the lock points

of the S-curves for the sampled data loop are shifted by Y7/2M relative

to those of the continuous type loop. More important, however, is that

the slope of the sampled data loop S-curves is degraded by

1

Msin
n o	 (2P < 1
	 (169)

2

relative to that of the conti guous loop. Note that, as the ratio of

sampling rate to data rate becomes large, then n = 1 and the two loops

perform equivalently. Thus, n represents the degradation in false and

true lock tracking performance due to the finite sampling rate.

Without going into great detail, suffice it to say that the

specific results previously obtained for the continuous loop by consid-

ering y integer and y= p/q with p and q relatively prime can be applied

to the sampled data loop as follows. The slope of every S-curve pre-

i
viously obtained must now be multiplied by n, and ^ must be replaced by

+ yTT/2M.

4.4	 Periodicity of Palse Lock Behavior

One final differencj between the false lock behavior of the con-

tinuous and sampled-data decision-directed I-Q loops is the periodicity

of the false lock behavior caused by the sampling opers:tion in the latter.

To see this, consider (.168) with y 'replaced by Y + 2M, namely,
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a

<e(t > - 1 (-1)
M sin(2 4
	 m-1	 mY	 2Mm

K K	 M	 - sin	
7r	 {^} (-1)
	 (-1)	 (-1)

1 m	 M)

X	
- 

sin 2m (^ + 2Pi, + 2mTr2m	 yTr ^
UJ

^r
- 1 sin	

4	 m-1

	

my	 2m	 (	 7
Mi	 (-1)	 (-1)	

(4m 
2	 sinl2m^+2M)^(170)

sin{ml 	 - 1)	 lL(12
)2M

which is identical to (168). Thus, the false lock behavior of the

sampled-data loop is periodic with period 2M. Similarly, the true lock

behavior of this loop is also periodic with period 2M.

4.5	 Comparison with Previous Experimental Results

Experiments on a second-order sampled data hardware version of a

suppressed carrier data-aided loop have been previously conducted [26].

Since, as previously mentioned in the introduction, the loop was actually

implemented as a sampled-data decision-directed I-Q loop similar to the

proposed Motorola loop, it is logical to compare the theoretical false

lock results obtained here with the comparable experimental results

reported in [46]• In particular, false lock acquisition tests were con-

ducted by offsetting the loop VCO from the nominal transmitted frequency

by a certain amount when the loop was open*, then closing the loop and

observing the transition to the steady-state condition. These tests were

conducted in the absence of noise.

The results of these experiments are illustrated in Figure 14

(same as ' ,.gure 3-14 of [2^6]). False lock points are indicated by the

solid vertical lines topped by numbers. The vertical dashed lines rep -

resent instability region boundaries. Some 'instability boundaries are

coincident with the false lock points. The arrows indicate the direction

taken by the loop VCO once the loop is closed, assuming that the initial

open-loop frequency offset falls somewhere between the relevant instabil-

ity boundaries. To illustrate this, for all initial IQ 0/2TrWL I< 0.19

(W
L 

is the two-sided closed-loop noise bandwidth), the proper lock point

The condition of open loop involves removing any residual memory
from the loop filter.

4
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is reached. For 0.19< 16?
0
/27rWL I< 0.42, the first false lock point

becomes the steady-state condition. For 0.5<1s2 0/27rWL '< 0.68, the loop

will tend to false lock at point 3. The alternate regions of false lock

are indicated by shaded arrows. The reason why some instability region

boundaries are coincident with lock points is unknown. Notice the defi-

nite subregions where frequency pushing away from the proper lock point

occurs. This would be indicated by any arrows that point to the right.

Since our theoretical results here apply only to false lock

tracking and not false lock acquisition behavior, we can, at best, hope

to verify the vertical solid lines observed in Figure 14. Since Figure 14

is plotted for 6 = 10 and 6 is defined as the ratio of data rate to one-

sided loop noise bandwidth, i.e.,

W 

2 

T
	 (171)

L

then the horizontal axis can equivalently be relabeled 5A fT where we have

also defined A  = Q0/27r in order to be consistent with our usage in this
P	 report. Thus, the observed false frequencies corresponding to vertical

lines 1 through 7 occur, respectively, at A  = 1/12T, 1/10T, 1/8T, 3/20T,

'	 1/6T, 3/161', and 1/4T. Note that the vertical lines 1, 2, 3, 5, and 7

have false lock frequencies of the form 1/q(2T) where q= 6, S, 4, 3, and

2. As previously discussed, false lock frequencies with the smallest

values of q are likely to be the most stable from the standpoint of exter-

nal noise disturbances. The two remaining false lock frequencies (ver-

tical lines 4 and 6) correspond to A f = p/q(2T)_where p= 3 and q= 10 and

8, respectively. These are, again, the values of A  where p and q are

relatively prime with the smallest values of q for p= 3 (within the region

of measured observation).

Because, of the false lock susceptibility of the hard-limited loop

proposed by Motorola, Axiomatix believes the implementation should be

'	 reviewed. At the moment it seems that, in the sampled data hardware ver-

sion proposed by Motorola, there is little implementation impact for not

hard-limiting the in-phase channel. Therefore, a better implementation

would be to eliminate the hard limiter, which would leave the first

false lock point at one-half the data rate ( i ntegrate -and -dump sample

time),i.e., outside the acquisition sweep range.

s
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5.0	 S-BAND ANTENNA MEASUREMENT

	

5.1	 Introduction and Statement of Problem

The actual gain pattern for the Orbiter S-band antennas is

difficult, at best, to predict from the customary ground antenna range

pattern measurements. This is because, for these flush-mounted antennas,

the Orbiter structure itself has a profound influence on the pattern.

Consequently, the adjacent sections of the Orbiter structure in which

the antennas are mounted have been mocked-up and, along with the antenna(s)

mounted in them, used for pattern tests on the JSC antenna range. This

technique typically yields fairly accurate gain measurements near the

boresight of the antenna, i.e., normal to the surface of the structure.

However, as the angle of boresight increases, the accuracy in the gain

pattern decreases due to edge effects of the limited structural mockup

and the missing influence of the more remote parts of the structure, such

as the wings.

Because of the predicted narrow margins for some of the S-band

Shuttle/TDRSS links, it is desirable to determine the antenna gains

with greater accuracy. This will enable a higher degree of confidence

in the Shuttle/TDRSS links to be established. A prime opportunity to

accomplish this finer calibration exists during the OFT phase because,

during OFT, communication with the Shuttle will be via STDN stations.

While in orbit, the actual performance of the Shuttle antennas will be

free of all the ground effects present on conventional antenna ranges.

Thus, with appropriate link calibration and data processing, the

OFT Orbiter/STDN link can function in the same manner as an antenna

range.

The remainder of this section describes a technical approach to

be used during OFT to obtain the finer gain calibration. The results

described are preliminary, and further refinement of the approach is

continuing.

	

5.2	 General Technical Approach

The RF link information which will be available during OFT for

purposes of Shuttle antenna calibration will fall into two general cate-

gories. First, there is the link information which will be obtained

during communication while the Orbiter is in a "random attitude."- By
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"random attitude," it is meant that the Orbiter attitude has not been
.t

	

	
picked specifically for antenna calibration purposes but, rather, is

determined by other mission requirements such as thermal testing or pay-

load operations. The other category of link information is that which

is obtained while the Orbiter's attitude is determined and controlled

specifically to support antenna calibration. The desired primary objec-

tive in this case is to utilize specific antenna coordinate profiles, or

"cuts," to obtain gain information for that portion of the antenna(s)

pattern. This would be implemented by having the Orbiter perform suit-

able roll and pitch maneuvers.

The type of link information gathered from the programmed atti-

tude profile is superior to the "random attitude" category. This is

because it is amore systematic approach and comes closest to conventional

antenna pattern measurement techniques. It is felt, however, that the

latter category of link information will be the predominantly available

information due to the pressure of numerous mission requirements for OFT.

Consequently, the preliminary approach taken here for developing an

antenna calibration technique has been to develop a method for utilizing

the "random attitude" category of data.

The general approach to calibrating the Orbiter S-band antennas

during OFT with "random attitude" data is as follows:

(1) Calibrate the STDN station.

(2) Record received signal strength versus Orbiter attitude.

(3) Filter the data from (2) to fill in any holes (i.e., inter-

polate for missing data for segments of the pattern).

(4) Filter the data from (2) to take advantage of multiple

measurements of the same segments of the pattern.

Figure 15 illustrates the basic mathematical link relationship

for determination of antenna gain from received signal power. From this

figure, it is seen that, in addition to Orbiter attitude, the key param-

eters which must be known or measured are: received signal power, cali-

brated STDN gain, Orbiter transmitted power, line-of-sight range, and

carrier frequency. This calculation is not normally encountered in con-

ventional antenna measurement procedures because, in conventional pro-

cedures, a standard gain horn is substituted for the antenna being mea-

sured and the received signal power is measured. Thereafter, the dB



NOTE: All loss < 0 dB

S-Band

Transmitter

PTU

OR

S-Band

Antenna

STDN
Antenna

Transmit	 GTU	 Receive

Circuit	 Downlink Communication	 Circuit	 Receiver

Loss, LT 1	Loss, LR2

GRSTDN	 P
RSTDN

^----^ • Range, R	 OR

S-Band	
Receive	 GRU

Receiver	
Circuit
Loss, LR,

PRU

Downlink Communications Antenna Gain
Determination

PRSTDN PTU + LT  + GTU + L  + GRSTDN + LR2

GTU PRSTDN PTU - LT I - LR GRSTDN - LR2

where

Transmit
Uplink CommunicationCircuit	 Transmitter

Loss, LT 

GTSTDN
PTSTDN

Uplink Communications Antenna Gain
Determination

PRU - PTSTDN + LT  + GTSTDN + L  + GRU + LR1

GRU PRU - PTSTDN - LT2 - GTSTDN - L  - LR1

GTU = Shut'e transmit antenna gain
GRSTDN

= STDN receive antenna gain

GRU
= Shuttle receive antenna gain

GTSTDN
= STDN transmit antenna gain

PTU
= Shuttle transmitter output power

PRSTDN
= STDN receive power

PRU
= Shuttle received power at receiver

PTSTDN
= STDN transmitter power

LTI = Shuttle transmit circuit loss LR2 = STDN receive circuit loss

LR 1 = Shuttle receive circuit loss LT = STDN transmit circuit loss

Figure 15.	 Link Relationships for Determination of Shuttle Antenna Gain During OFT
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A

difference in received signal power with the measured antenna indicates

the gain relative to the standard gain horn.

The calibrated STDN gain includes the entire receive (or trans-

mit) chain including antenna gain, antenna feed circuit losses, preamp

gain, and receiver gain. Since it may be desirable to measure received

signal power on the Orbiter, the STDN gain and power in the transmit

mode must also be known. Similarly, the Orbiter antenna circuit losses

must be known in both the transmit and receive modes.

Since the STDN stations are not operated for metrology purposes,

it is unlikely that sufficiently accurate gain calibration for the sta-

tions will exist. However, it should be possible to use the Orbiter

itself to calibrate the STDN station. This could be accomplished by

using the measured STDN received signal strength when an Orbiter S-band

antenna is being used in an orientation that has a high degree of gain

confidence, i.e., close to antenna boresight. Calibration techniques

will be presented in detail in a subsequent report.

The basic information gathering and processing procedure to

obtain the gain pattern is shown in Figure 16. Provisions for gain cal-

culations from both uplink and downlink communications are shown. The

majority of Figure 16 depicts the information flow necessary to evaluate

the equations shown in Figure 15., The box labeled "Unprocessed Gain

Matrix" represents the three-dimensional matrix of measured antenna gain

samples. This matrix is depicted in Figure 17. The X and Y coordinates

correspond to the quantized azimuth and elevation coordinates of the

antenna. The Z coordinate corresponds to the measured gain samples.

There may be several gain samples for a. given coordinate, corresponding

to several passes of the same station or samples of the gain at that

coordinate for several stations. In general, the elements of the

three-dimensional gain matrix are identified by GN,e,^

where

GN,B,^ = gain sample which is a function of station, station
elevation? angle, Orbiter attitude, and Orbiter transmit
circuit

N	 number of gain samples for the particular 8,^ cell

a	 Shuttle elevation angle

t-- ire, where oe is the desired elevation angular resolution
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i	 0 9 ±l, ±2 1, ..., ±I, where Ioe is the region of interest
for the antenna pattern for elevation

ja0, where o0 is the desired azimuth angular resolution

j = '0, +_1, ±2, ..., ±J, where JAS is the region of interest
for the antenna pattern for azimuth.

The matrix of GN,e,o will, in general, have many 0,0 cells for which

where will be no values and others for which there will be several values.

Thus, to arrive at the final antenna pattern, it is necessary to pass

this matrix through an appropriate filter/estimator. This process is

discussed in the following section.

5.3	 Antenna Data Processing Algorithm

The flow chart for the preliminary antenna data processing

algorithm is shown in Figure 18. The first step in the process is to

read the data tapes for both Shuttle data and STDN station data. At this

point, it is assumed that all data is appropriately annotated and time

tagged. Thus, it should be fairly straightforward to correlate Shuttle

received signal power with Shuttle attitude. Whether this software

exists, or must be modified, or must be developed will be evaluated as

the follow -on study continues. Calculation of the raw gain is a straight-

forward process, as depicted in Figure 15. Once the raw gain samples are

correlated with the corresponding coordinates, the raw gain matrix GN,^,e

exists. The remainder of the algorithm, with the exception of the gener-

ation of the weighting factor, W n , is devoted to the filtering and esti-

mation processing of 
GN,^,O' 

The filtering and estimation process is a

complex problem involving linear -interpolation and extrapolation of a

random space-time field with a limited domain of measurement. An initial

heuristic approach to the problem is depicted in Figure 18. However, the

mathematical analysis of a more effective algorithm -has been started and,

when completed', will be used to update the process of Figure 18. The pre-

liminary findings of this analysts are summarized in the following section.

The calculation of weighting factors is another process that is

currently under development. Some of the factors considered in the weight-

ing factor calculation include the distance the antenna coordinate is from

the antenna boresight, the accuracy of STON station calibration, the ele-

vation angle of the STDN station, and several other link and hardware

considerations.

f
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After the weighting factors have been assigned to each sample

of G
N,B,,, a weighted average is performed along the N dimension (Z axis

of the matrix) for each e,^ coordinate. This results in

_	 N
G 	 X GN, e ,0 W ( N , e ,o)	 (172)

n=l
for all

6,0

Since N will be 0 for some e,^ coordinates, it is necessary to use the

nearest adjacent samples to these missing samples to interpolate the

missing samples. This is shown in Figure 18. Where N is small for e,^

cells, it is desirable to weight the weighted average of (172) with the

adjacent neighbors' weighted averages. This process, combined with the

interpolation process, is actually filtering in the e,^ plane. Again,

the final algorithm for this two-dimensional filtering process is sub -
ject to the results of the analysis currently being conducted.

As shown in Figure 18, as more data tapes become available, the

process is reiterated. This provides a more accurate estimate of the gain

pattern. This basic analytical approach for the filtering algorithms is

described next.

5.4	 Derivation of Antenna Gain Filtering Algorithm

An initial analytical expose is presented which will provide a

good estimate of the variations in the Shuttle antenna pattern due to

the Orbiter's appendages and obtained from measurements taken from

orbital passes. The analysis will need to be massaged to account for

specific intricacies of the antenna problem, such as:

(1) Large known variations in signal strength from measurement

to measurement due to

(a) position in pattern that is being measured,

(b) variations among the various ground receivers such as

fixed biases, and

(c) ground station uncertainties.

(2) There exists a benchmark or baseline antenna pattern

obtained from ground measurements. As a result, what we are actually

determining are the changes in the pattern versus the vehicle attitude

due to the presence of the Orbiter's appendages.

f
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(3) There exists some calibration capability because the antenna

pattern will not change in certain regions (for example, at boresight).

As a result, the output of this exercise is a set of variations

from the present baseline patterns obtained from ground measurements.

The variations in antenna pattern and the resulting measurements

can be satisfactorily modeled in terms of added biases and additive Gaus-

sian noise. As a result, the problem at hand can be described as linear

interpolation and extrapolation of a random space-time field with a

limited domain of measurement.

5.4.1	 Basic Approach

Let us consider the basic problem of linear estimation and inter-

polation in the absence of additive noise. _A random variable G(X)

defined on a multidimensional argument X= {xl, x
2 9 

..., xN } is to be

measured at a set of points {X k }, k= 1, ..., n, which is to be used to
n

form a linear estimate GM by means of a linear combination of the

sampled values with appropriate weighting factors:

4

G(X) _	 X G(X k ) w(X,Xk)	 (173)
k=1

For the antenna pattern, N= 2, and X= (e l ,e 2 ) for the two angles

necessary to specify positions on the pattern. In (173), w(X,X k ) are the

weighting factors to be determined; G(X k ), k= 1 9 ..., n, are the antenna

measurements; and G(X) is the estimated antenna pattern, and X can be

any value for which the pattern is to be determined.

Our criterion for estimation is to minimize the mean-square error

QE	 = E	 [G(X)	 6(X)12 	 (174)

which can be expressed as

QE2	 E [G(X)12 - 2 E w(x,xk) E G(x)G(X d
	k=1 	 [

+ Y	 ^ w(X,x k ) w (X,x k ) E[G(X k)G(X 'j	 (175)
z=1 k=1



tK r	 __

r
L. 96r

.a
Introducing the notation

K(X,Y)	 4	 E[G(X)	 G(Y)j	 (176)
y

for the cross-correlation function of the antenna pattern, which contains

the known second-order statistics, the mean-square error can be written as

^E2	
=	 K(X,Xj	 - 2	 1	 K(X,X) w(X,X

k	 kk=1

n	 n
+	 (Xk,XQ) w(X,X k ) w(X,XQ )	 (177)

Q=1	 k=1

By using standard techniques to determine the set of the weight-

ing values {w(X,X k )	 to yield the minimum value of mean-square error,

necessary and sufficient conditions which must be satisfied are

n
K(X,X r )	 _	 K(Xr,Xk) wo(X,Xk)

k=1r =	 1,	 .,.,	 n	 (178)

where Iwo (x,y)} are the optimum weights.

By substituting (178) 	 into (.177), an expression for the minimum

mean-square error is i

n

=	 K(X'X)	 -	 ^	 K (X ,X k ) w o (X ,X k )	 (179)min
k=l

When these optimum weights are determined from (178) and the

theory is extended to take into account the specific issues enumerated

at the outset, the most effective weight will	 result for updating the

Shuttle antenna pattern.

Y
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6.0	 S-BAND RFI MEASUREMENT
a

During the course of this contract, Axiomatix was asked to

examine the possibility of evaluating the effects of RFI on TDRSS S-band

communication during OFT. The scenario for the RFI and operational S-band

Shuttle/TDRSS communication links is shown in Figure 19. Because TDRSS

will not be available for OFT, the concept was to use the Shuttle S-band

receiver as a test instrument to possibly detect the RFI. This test sce-

nario is shown in Figure 20.

The first question asked was whether the Shuttle would be visible

to both the RFI and the STD! ;luring OFT. To answer this question, JSC

ran the orbital trajectory software. Typical .results are shown in Fig-

ures 21 and 22 for a 38 0 , 120-mile orbit. Figure 21 is the elevation

angle at the East German RFI. It can be seen that the maximum elevation

is less than 0.5 degree and that this limited visibility lasts for only

2 minutes. The only STDN station to potentially have simultaneous visi-

bility is Madrid. Figure 22 shows the elevation angle at Madrid for this

time period. Unfortunately, there are virtually only a few seconds before

the Madrid station antenna is obstructed by the local terrain. For the

BRM 2, or "Base Reference Mission" (55°, 300-mile orbit), however, the

situation is somewhat different, as shown in Figures 23 and 24. Fig-

ure 23 is the Shuttle visibility (elevation angle) at Madrid and Fig-

ure 24 is the g ame for the East Germany RFI. It can be seen that there

is good overlap, although for only several minutes. One possible method

for increasing the overlap time is to utilize a portable "STDN" station.

This station would be positioned at a location, preferably a U.S. base

or facility within an allied country, which would be chosen to yield as

much overlap time as possible. The location and design of the portable

station will be studied as part of the follow-on contract.

The next step in the evaluation is to analyze the signal level

of the RFI at the Shuttle during OFT and attempt to predict the effects

of the Shuttle receiver. This work will be undertaken during the

follow-on contract.
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7.0	 PAYLOAD INTERFACE INTEGRATION

The Orbiter avionics equipment serving attached and detached

payloads perform two major functions. First, there are avionic equip-

ment that perform payload RF signal processing and baseband signal pro-

cessing functions. Second, there are avionic equipment that perform the

payload data handling functions. The equipment in the first category are

Payload Interrogator (PI), Payload Signal Processor (PSP), Communication

Interface Unit (CIU), avid Ku-Band Signal Processor (KuSP). The equipment

in the second category are Payload Data Interleaver (PDI), PCM Master Unit

(PCMMU), Network Signal Processor (NSP), and various DUD encryptor/decryp-

for units.

	

7.1	 Attached Payload Communication

In the attached mode, a hard line (umbilical) provides two-way

communication between the payload and the Orbiter. Scientific data, engi-

neering data, guidance, navigation and attitude control data (GN&C), as

well as caution and warning data (CW), are received by the Orbiter from

the Payload.

Alternately, command data, GN&C, and uplink data are transmitted

to the payload from the Orbiter,.

Figure 25 illustrates the functional scientific data interfaces

for attached payloads. Only limited processing, that required to through-

put data to a ground terminal, is provided for payload medium-band and

wideband scientific data inputs (inputs in the range of 16 kbps to 50 Mbps).

For data rates below 64 kbps, the data can be routed through the PDI to

the PCMMU, where it is made available to the general-purpose computers

(GPC) for processing and on-board display. A payload specialist crew

member may then interface directly with a specific experiment, as required.

Medium-band scientific data is routed to the receiving ground terminal

either via the S-band FM link or via the Ku-hand system as follows:

(a) S-band FM:

Analog:	 300 Hz - 4 MHz
or

Digital: 200 bps	 5 Mbps NRZ-L, or
200 bps	 2 Mbps biphase-L

i

t	 __
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(b) Ku-band:

Analog:	 DC - 4.5 MHz 5W
plus	

Digital: 16 kbps - 1024 Mbps biphase-L
or	 16 kbps - 2 Mbps NRZ-L, M, or S.

Wideband science data in the form of .a PCM bit stream (NRZ-L, M,

or S) at rates between 2 and 50 Mbps is accommodated via the Ku-band link.

When operating in this mode (Ku-band. Mode 1, channel 3), the input data

stream is convolutionally encoded at rate 1/2 to achieve the necessary

error protection on the link. The input payload data stream must be

accompanied by a 1x bit rate clock, which is used to drive the encoder

circuitry.

The Ku-band wideband analog channel input (DC - 4.5 MHz) can be

used by payloads with unique modulation schemes or data formats as a

transparent throughput channel, which provides greater data transfer,

flexibility and minimum Orbiter processing. Capability is constrained

only by the_KuSP bandwidth. Also,- as discussed in Section 2.0, digital

data on a subcarrier or certain other modulated digital data can be

relayed using the narrowband bent-pipe mode of the KuSP.

Figure 26 depicts the Orbiter provisions for processing, display-

ing, and downlinking systems status data from attached payloads in support

of payload monitoring and checkout functions. Data can be accessed by

the Orbiter via either of two interfaces: (1) a multiplexer/demultiplexer

(MDM) serial 1/0 channel (SIO) which makes data available directly to the

GPCs for processing, display, and downlinking; and (2) one of five inputs

to the PDI which makes specific parameters contained in the input PCM bit

stream (0 to 64 kbps) available to the PCMMU for insertion into the oper-

ational instrumentation (0I) downlink and available to the GPCs for pro-

cessing and display. The MDM SIO channel operates at a l Mbps burst rate

and therefore is not necessarily best suited for payloads having conven-

tional PCM data systems; however, 'the PDI is specifically designed to

accommodate continuous PCM inputs.

Data transfers from a payload to a serial MDM channel must have

a length of exactly 32 data words (16-bit word) and the sequence must

conform to the following order:

(1) response header word (RHW)

(2) record I0
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(3) data

(4) contents of the data words required to complete a 32: 16-bit

word transaction may be arbitrary.

The PDI provides the capability to receive engineering data from

a

	

	 up to five attached payloads simultaneously. The PDI then decommutates

up to four of these inputs and provides time-tagged, time-homogeneous

data from these four payloads simultaneously to the Orbiter data process-

ing subsystem (DPS) for on-board display and/or transmission to the ground

via OI downlink.

In order to provide the data processing service, the input data

to the PDI must be in a standard format, as follows:

•	 Bits per word: 8

•	 Words per frame: 1024 max

•	 Subframe rate groups per frame: 4 max

•	 Words per subframe: 128 max

•	 Frame rate: 200 per second max

•	 Bits per frame synchronization: 8, or 1.6, or 24, or 32

•	 Process data rate: Up to 64 kbps.

The throughput data rate (composite PDI output to the PCMMU) is

limited to 64 kbps max on-orbit and 5 kbps for ascent.

A capability to throughput data which is in nonstandard format,

or other unique data such as encrypted data, is also provided by the PDI.

In this mode, the frame synchronization circuitry is bypassed and arti-

ficial data blocks are established to transfer the data to the PCMMU. No

on-board processing or display of the data is available when operating in

the nonstandard mode.

The capability for the Orbiter to provide hazards monitoring,

annunciation, and control is depicted in Figure 27. Five hardwired

inputs to the caution and warning electronics unit (CWE) are provided

for out -of- limit sensing and annunciation at the forward flight deck
panel. In addition audible tones (siren for fire smoke and klaxon for

rapid depressurization) are generated and sent to the audio central con-

trol unit (ACCU) for distribution. An additional 50 inputs (25 analog/25

_discrete) are accommodated via an MDM for annunciation by the CWE, as

well as fault annunciation display on the Orbiter CRT. System-safing is

provided via five dedicated switches located on the forward flight panel
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or via 36 software-controlled discrete output signals available from 'the

MDM. Backup hazards monitoring is available through the use of redundant

channels or through the PDI/PCMMU interface provided for systems manage-

ment data.

A capability for direct recording of certain types of payload data

is provided, as shown in Figure 28. The payload recorder is a 14-track

recorder capable of serial or parallel recording of digital and analog

data. Data rates from 25.5 kbps to 1:024 Mbps and analog data of 1.9 kHz

to 2 MHz may be recorded. A minimum record time of 56 minutes is provided

at tra maximum data rate. Simultaneous analog/digital parallel recording

is limited to the first record pass. Subsequent passes are restricted to

sequential single-channel digital record.

A total of 14 tape speeds (4 per mission) are available and

selectable by on-board or ground control.

Guidance., navigation and attitude control services are provided

for payloads using the interface shown in Figure 29. The Orbiter provides

state vector update data words to payloads, provides target state vector

update data words to payloads, receives body vector and target vector for

payload pointing via Orbiter attitude maneuvers, and receives attitude

errors and commanded angular rates from payload-mounted sensors for coop-

erative attitude control.

Orbiter state vector data can be transmitted to an attached pay-

load at 1 Mbps clock rate via an MDM half-duplex serial channel or the

PSP on a 16 kHz sine wave subcarrier at one of nine binary command data

rates (125/16 bps to 2 kbps). Closed-loop pointing sensor/attitude con-

trol is provided by utilizing two half-duplex serial MDM channels.

7.2	 Detached Payload Communication

The basic low rate data-processing/display services that are pro-

vided for attached payloads are also provided for detached or deployed

payloads via S-band RF communications link between the Orbiter and pay-

load. Figure 30 shows the interfacing hardware that supports this link.

The dashed lines indicate the signal paths for detached payloads and the

solid lines are attached payload paths. Note that, when the spacecraft

is launched by the Inertial Upper Stage (IUS) as shown inFigure 30 the

spacecraft only communicates in the attached mode through the IUS. Also,
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note that the PI cannot communicate with the IUS and the spacecraft

simultaneously.

The Orbiter S-band transceiver (PI) that supports RF communica-

tions with detached payloads is compatible frequency-wise with STDN, SGLS,

and DSN-compatible payloads--capable of operating at approximately 850

selectable frequencies in the 2200-2300 MHz range.

Telemetry signals in the Orbiter standard mode of operation are

routed from the PI, after carrier demodulation, to the PSP, where the

data is demodulated off of a 1.024 MHz subcarrier for a 1.7 MHz subcarrier

for DOD). The data is then routed to the PD!/PCMMU/GPC for decommutation

processing, display and downlinking in the same manner as for attached

payloads.

Data rates that can be accommodated by the PSP in the standard

mode are 16, 8, 4, 2, and 1 kbps. Processing for 256, 64, 32, 10, 0.5.,

and 0.25 kbps may be provided by a special DOD processor located at the

payload station in the aft flight deck for DOD missions. In this mode,

the PSP is bypassed. The PSP is being designed to accommodate any one

of six PCM code formats in the standard mode (biphase-L, M, S and NRZ-L,

M, S) .

The Orbiter standard mode of operation was selected to provide a

degree of flexibility of operation while minimizing basic Orbiter hardware

costs. Payloads that ultimately fly on the Orbiter which are not compat-

ible with the standard in terms of data rate or subcarrier frequency will

be accommodated in a transparent throughput fashion, using a "bent-pipe"

mode of operation. In this mode,, the interrogator output, following car-

rier demodulation, is routed to the KuSP 4.5 MHz analog input channel or

the 2 Mbps digital channel. These inputs are essentially limited only by

the respective bandwidths and are capable of a wide range of data rate/

subcarrier options (the 2 Mbps channel is limited to one subcarrier).

Unique demodulation hardware at either the Ku-band ground station or the

payload operation center currently must be provided by the payload requir-

ing bent-pipe service. The bent-pipe channels are available for use by

one detached payload at a time with the following capabilities:

0	 Digital data from 2 kbps to 2 Mbps, or

s	 Analog data from 2 kHz to 2 MHz, or

:0	 Digital data from 16 kbps to 4 Mbps, or

t
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•	 Analog data from DC to 4.5 MHz.

No on-board processing or display of data is available when oper-

Iting in the bent-pipe mode:

7.3	 Orbiter Avionic Equipment Serving Payloads

In order to determine that the interfaces between Orbiter avionic

equipment serving payloads are compatible and that the NASA performance

requirements are being met, the details of the avionic equipment were

studied. This section summarizes the avionic equipment operation and

capability.

7.3.1	 Payload Interrogator

i

4

The function of the PI is to provide the RF communication link

between the Orbiter and detached payloads. For communication with the

NASA payloads, the PI operates in conjunction with the PSP. During DOD

missions, the PI is interfaced with the CIU. Nonstandard (bent-pipe) data

received by the PI from either NASA or DOD payloads is delivered to the

KuSP, where it is processed for transmission to the ground via the

Shuttle/TDRSS link.

Simultaneous RF transmission and reception is the primary mode of

PI operation with both NASA and DOD payloads. The Orbiter,-to-payload

link carries the commands, while the payload-to-Orbiter link communicates

the telemetry data. In addition to this duplex operation, the PI provides

the "transmit only" and "receive only" modes of communication with some

payloads.

Figure 31 shows the functional block diagram for the PI. The

antenna connects to an input/output RF port which is common to the

receiver and the transmitter of the PI unit. Because of a requirement to

operate the PI simultaneously with the Shuttle/ground S-band network

transponder which radiates and receives onthe same frequency bands, a

dual triplexer is employed. The S-band network transponder emits a sig-

nal at either 2217.5 MHz or 2287.5 MHz; both frequencies thus fall

directly into the PI receive band of 2200-2300 MHz. Conversely, the pay-

load transmitter, operating in either the 2025-2120 MHz (NASA) or the

1764-1840 MHz DOD bands, can interfere with uplink signal reception by

the S-band network transponder receiver. Therefore, by use of the

iE ^a 	-
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triplexer and by simultaneously operating the PI and network transponder

in the mutually exclusive subbands, the interference problem is effec-

tively eliminated.

The receiver frequency and phase tracking loop begins at the sec-

a+

	 ond mixer. As shown in Figure 31, the output of the first IF amplifier

is down-converted to the second IF as a result of mixing with a variable

second LO frequency, 
fL02. 

The portion of the second IF which involves

only the carrier tracking function is narrowband, passing the received

signal residual carrier component and excluding the bulk of the sideband

frequencies. Demodulation to baseband of the second IF signal is accom-

plished by mixing with a reference frequency, fR . The output of the

tracking phase detector, after proper filtering, is applied to the control

terminals of a VCO which provides the second local oscillator signal,

thereby closing the tracking loop. Thus, when phase track is established,

fL02 follows frequency changes of the received payload signal.

For the purpose of frequency acquisition, the fL02 may be swept

over a ±50 kHz uncertainty region. Swee p is terminated when the output

of the coherent amplitude detector (CAD) exceeds A, preset threshold,

indicating that the carrier tracking loop has attained lock. The output

of the CAD also provides the AGC to the first IF amplifier.

A wideband phase detector is used to demodulate the telemetry sig-

nals from the carrier. The output of this detector is filtered, envelope

level controlled, and buffered for de'2ivery to the PSP, Clli, and KUSP.

The PI receiver frequency synthesizer provides the tunable first

LO frequency and the corresponding exciter frequency to the transmitter

synthesizer. It a'iso delivers a reference -signal to the transmitter phase

modulator. Baseband NASA or DOD command signals modulate the phase of

this reference signal which is, in turn, supplied to the transmitter syn-

thesizer where it is upconverted to either the NASA or DOD transmit fre-

quency and applied to the power amplifier.

For transmitter efficiency optimization, separate NASA and DOD RF

power amplifier units are used. Depending on the operating band selected,

transmitter output is applied to either the high-band or low-bard

triplexer.
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7.3.2	 Payload Signal Processor

The PSP performs the following functions: (1) it modulates NASA

payload commands onto a 16 kHz sinusoidal subcarrier and delivers the

resultant signal to the PI and the attached payload umbilical, (2) it

demodulates the payload telemetry data from the 1.024 'MHz subcarrier sig-

nal provided by the PI, and (3) it performs bit and frame synchronization

of demodulated telemetry data and delivers this data and its clock to the

PDI.

The PSP also transmits status messages to the Orbiter's GPC; the

status messages allow the GPC to control and configure the PSP and vali-

date command messages prior to transmission.

The functional block diagram for the PSP is shown in Figure 32.

The PSP configuration and payload command data are input to the PSP via

a bidirectional serial interface. Transfer of data in either direction

is initiated by discrete control signals. Data words 20 bits in length

(16 information, 1 parity, 3 synchronization) are transferred across the	
f

bidirectional interface at a burst rate of l Mbps, and the serial words

received by the PSP are applied to word validation logic which examines

their structure. Failure of the incoming message to pass a validation

test results in a request for a repeat of the message from the GPC.

Command data is further processed and validated as to content and

the number of command words. The function of the command buffers is to

perform data rate conversion from the 1 Mbps bursts to one of the selected

standard command rates (see Table 2). Command rate and format are spec

ified through the configuration message control subunit.

Table 2. NASA Command System Parameters	 {

Subcarrier Frequency	 16 kHz, sinewave	
J

Bit Rates	 2000.2N bps, N = 0,1,2,.,.,8

E bA for Pe 1 X10- 
5 
	 10.5 dB

a
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From the message buffers, the command bits are fed via the idle

pattern selector and generator to the subcarrier bi.phase modulator. The

idle pattern (which in many ,cases consists of alternating "ones" and

"zeros") precedes the actual command word and is usually also transmitted

in lieu of command messages. Subcarrier modulation is bip'hase NRZ only.

The 1.024 MHz telemetry subcarrier from the PI is applied to the

PSK subcarrier demodulator. Since the subcarrier is biphase modulated,

a Costas-type loop is used to lock onto and track the subcarrier. The
resulting demodulated bit stream is input to the bit synchronizer sub-

unit, where a DTTL bit synchronization loop provides timing to an

integrate-and-dump matched filter which optimally detects and reclocks

the telemetry data.

From the frame synchronizer, the telemetry data with corrected

s
frame synchronization words and clock are fed to the PDI. The telemetry

detection units also supply appropriate lock signals to the Orbiter's
operational instrumentation equipment, thus acting to indicate the

presence of valid telemetry.

7.3.3	 Communication Interface Unit

The CIU,. shown 'in Figure 33, is the DOD equivalent of the NASA
PSP. The major differences are that the CIU (1) handles ternary commands.
in both baseband and FSK tone formats, (2) accepts Orbiter crew-generated
commands, (3) permits a much larger range of standard telemetry data rates
(see Table '3'), and (4) is capable of simultaneously handling two subcar-
rier frequencies.

Table 3. Standard Payload Telemetry Modulation Characteristics

Parameter/Range

Frequency
Parameter	 PSK Modulation	 Modulation

Subcarrier Frequencies	 1.024 MHz or 1.7 * MHz	 1.7* MHz

Bit Rates or Modulation	 256,*t 128, *t 64,* 32, * 16, 10,	 100 Hz to
8, 4, 2, 1, 0.5,* 0.25* kbps	 200 kHz

Peak Deviation	 ±Tr/2 radians	 ±160 kHz

Output Bandwidth	 400 kHz	 500 kHz

*DOD only	 f1.7 MHz subcarrier only
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Ground-generated commands may be received from dither the KuSP

or the NSP (through the computer/MDM interface). Received as a continuous

binary data stream at 128 kbps from the KuSP and 1 Mbps bursts from the

NSP, they must be detected and buffered. The binary outputs of the

buffers are either 4 kbps or 2 kbps which, when converted to the ternary

format, become symbol rates of 2 ksps and 1 ksps, respectively. Input

to the binary-to-ternary converter consists of serial data plus clock

(two lines), and output consists of the "S," "0, and "1" symbols plus

clock (four lines).

Crew-generated commands are input through the command generator

and verification unit which outputs them in the proper ternary format.

A priority selection switch determines whether ground or Orbiter origi-

nated commands will be transmitted to the payload. The FSK/AM generator

encodes the ternary commands 'into the proper signal for transmission to
the payload. Three subcarrier tones of 65 kHz, 76 kHz, and 95 kHz

(corresponding respectively to the "S," "0," and 1" symbols) are

employed in a time-serial manner. The command rate clock, at one-half

the symbol rate and in the form of a triangular wave, is amplitude modu-

lated onto the composite tone stream. Attached payloads may receive

either the ternary baseband or tone command signals from the CIU.

Figure 33 shows that there are one PI and four hardline telemetry

inputs to the CIU. The modulated subcarrier characteristics are indicated

in Table 3. All subcarrier inputs are routed through an input'selector

to the two PSK demodulators. These PSK demodulators are similar to the

one used in the PSP. The FM discriminator; however, demodulates the

analog baseband signal from its 1.7 MHz subcarrier (see Table 3) which

is, in turn, sent to the KuSP to be handled as "bent-pipe" telemetry.

All demodulated/detected and hardline telemetry is routed to the selector/

multiplexer where it is partially demultiplexed and sorted for reformatting

to the PDI and where the command verification data from the payload is

extracted for the command generator and verification unit.

7.3.4	 Ku-Band Signal Processor

The KuSP receives payload data from the P1, PSP, PR, operational

recorder (OR), and attached payload interface (API). Similarly, the

KUSP transmits data to 6he payload via the CIU or via the NSP/GPC/PSP
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(or CIU). Table 4 presents the characteristics of the data that are

handled by the KuSP. The 216 kbps data shown for the forward link origi-

nates at the TDRSS ground station and can be 72 kbps command data to the

NSP, 128 kbps DOD command data to the CIU, 128 kbps text and graphics

data, and 216 kbps data containing 72 kbps command data plus digital

voice data that is sent directly to the NSP. Figure 34 illustrates the

functional processing of the KuSP for data to be transmitted to the pay-

load (i.e., the forward link). When the forward link contains the normal

S-band 216 kbps operational data of the 72 kbps command data plus digital

voice data, the data mode select is set to transfer the data directly to

NSPi and NSP2 without any processing in the KuSP. Note that, in this

data select position, the possible data rates are 32, 72, 96, 216 kbps.

When the 216 kbps forward link data contains either text and graphics

data or DOD command data, then data mode select is set to transfer the

72 kbps command data to NSPi and NSP2. The 128 kbps DOD command data

is actually either 2 kbps or 4 kbps which has been coded to use the

available 128 kbps data rate without having to modify the KuSP bit syn-

chronizer or frame synchronizer design.

The characteristics of the data that must be processed by the

KuSP on the return link are quite varied, as shown in Table 4. The

return link is transmitted in one of two modes which are identified by

the type of carrier modulation utilized. Mode 1 implements unbalanced

quadriphase-shift-keying (UQPSK) while Mode 2 implements FM. In both

modes of operation, two of the channels (1 and 2) UQPSK modulate a sub-

carrier. Mode l utilizes this modulated subcarrier along with the third

channel to UQPSK the carrier, as shown in Figure 35. Mode 2 linearly

sums the modulated subcarrier with the third channel and frequency

modulates the carrier with the resultant summed signal, as shown in

Figure 36.

Channel 1 always (Modes 1, and 2) carries the operations data of

192 kbps consisting of 128 kbps telemetry data and two 32 kbps delta-

modulated voice channels. Similarly, the data on Channel 2 does not

change from Mode 1 to Mode 2. Channel 2 carries the output from the

PR, the OR, and the PSP as well as low rate data for the API and narrow

band bent-pipe data from the PI, as described in Section 2.0. The range

of data rates handled by the KuSP Channel 2 is shown in Table 4 to be

k	 ^
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Table 4. Ku-Band Signal Processor Data Characteristics

Processor Interface Type Rate or-Bandwidth

FORWARD LINK

Operations Data - NSP(1,2) Digital 32,72,96,216 kbps (Manchester)

Command/Text & Graphics- NSP Digital 72 kbps Command
(1,2) and Text & Graphics 128 kbps Text & Graphics

16 kbps Frame Sync
(Manchester)

Command/DOD Payload Command Digital 72 kbps Command
Data- NSP(1,2)/CIU 128 kbps DOD Payload

16 kbps Frame Sync
(Manchester)

RETURN LINK

CHANNEL 1	 (MODE 1/MODE 2)

Operations Data -NSP(1,2) Digital 192 kbps (Manchester)

CHANNEL 2 (MODE 1/MODE 2)

Payload Recorder (PR) Digital 25.5-1024 kbps	 (Manchester)

Operations Recorder (OR) Digital 25.5-1024 kbps (Manchester)

Payload low data rate - PSP Digital 16-2000 kbps	 (NRZ)
(1,2) or Attached Payload 16-1024 kbps (Manchester)
Interface (API)

PI(1,2)	 low data rate Digital/Analog 16-2000-kbps	 (NRZ)
16-1024 kbps (Manchester)
0-2 MHz

CHANNEL 3 (MODE 1)

Attached Payload Interface Digital 2-50 Mbps (NRZ)
(API)

CHANNEL 3	 (MODE 2)

PI(1,2)	 high data rate Digital//analog 16-4000 kbps (NRZ)
0-4.5 MHz

Attached Payload Interface Digital/Analog 16-4000 kbps (NRZ)
0-4.5 MHz

Video Interface Unit Analog 0-4.5 MHz
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16-1024 kbps Manchester coded data, 16-2000 kbps NRZ coded data, or

DC-2 MHz analog bent-pipe data.

The data carried on Channel 3 in Mode 1 is digital data of

2-50 Mbps (NRZ) which is rate 1/2-constraint length 7, convolutionally

encoded by the KuSP to maintain adequate performance'margin at bit error

probability of 10 -6 . Because the output data rate of the convolutional

encoder is twice the input, the input data clock must be doubled by the

KuSP. The input clock is regenerated and synchronized with the input

data to compensate for phase offsets and to avoid sampling the data

stream near transitions. A voltage-controlled oscillator (VCO) at twice

the clock frequency is divided by 2 and compared in a phase/frequency

detector. The detector output locks the VCO to twice the clock frequency

over the entire frequency range of 2 to 5 MHz.. Use of the phase/frequency

detector makes it possible to cover -the 25:1 frequency .range without

selecting bands. To correct for asymmetry in both the clock (specified

at 2.0 percent maximum) and data (specified at 25 percent maximum) at

the KuSP input, a very symmetric clock is regenerated and used to clock

the convolutional encoder. The data bits are sampled using a pulse

generated every other clock pulse. The KuSP clock regeneration circuit

senses the proximity of .a data transition to the sample pulse and inverts

the clock when the transition is within 5 nsec of the sample pulse, thus

shifting the sample pulse toward the middle of the data bit. The KuSP

reduces the encoder output data asymmetry to less than 10 percent for

,all input rates and for the input clock and data asymmetry up to their

maximum specified values.

in Mode 2, the .UQPSK modulated 8.5 MHz subcarrier is filtered,

as shown in Figure 36, by a bandpass filter with -3 dB points at 4.75

and 12:8 MHz. This BPF has extremely sharp low frequency skirts (-40 dB

point >_ 4.0 MHz) to minimize spectral spillover of the modulated sub-

carrier into the Channel 3 frequency .band (DC-4.5 MHz). The Channel 3

input is passed through a lowpass filter with specified amplitude

response of -3 dB at 5.5 MHz and =20 dB at 8.1 MHz. Differential delay

is no more than 20 nsec due to equalization. Although the combination

of these two filters will provide excellent performance of the linear

Channel 3,_ their-selection is suboptimum for Channel 2 performance since

the bandpass necessarily has a high bandwidth to center frequency ratio
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and the lowpass filter provides only nominal skirt rejection. Note that

the degradation to Channel 2 due to spectral spillover from Channel 3

depends on the type of data on Channels 2 and 3. The worst degradation

occurs when Channel 2 is 2 Mbps NRZ digital data and Channel 3 has a

flat spectrum greater than 8 MHz, Table 4 presents the type of data

present in Channel 3 for Mode 2. The data with the greatest spectral

bandwidth and hence the most potential degradation to Channel 2 is the

4.0 Mbps NRZ digital data, but it is unlikely that Mode 2 would be used

to transmit this data. More likely, Mode l would be used. to transmit

digital data at this high rate. The analog data from the PI can range

from DC to 4.5 MHz but, since the PI contains a lowpass filter with

effective noise bandwidth equal to 5 MHz, it can be expected that this

signal will cause little degradation to Channel 2. The video interface

unit (VIU) outputs a television signal with spectral bandwidth of approxi-

mately 4.5 MHz. Here again, there will be little spectral spillover into

Channel 2 and there should be little degradation. The data from the API

can be either digital data from 16 to 4000 kbps or analog data with spec-

tral bandwidth from DC to 4.5 MHz. Again, high rate digital data will

probably be transmitted in Mode 1 rather than Mode 2. However, there is

no filtering specified for the API; therefore, the greatest potential

degradation to Channel 2 from Channel 3 is when Channel 2 contains 2 Mbps

NRZ digital data and the output of the API has a larger spectral bandwidth

than 4.5. MHz, resulting in significant spectral spillover. This worst-

case degradation to Channel 2 is 3.3 dB. While the circuit margin on

Channel 2 is large enough to allow this much degradation, the use of the

three channels for a given mission should be examined to guarantee that

the correct mode is selected and that the data to be transmitted will

achieve the required performance on each of the channels.

b	 1.3.5	 FM Signal Processor

The FM-SP and FM transmitter provide a capability for transmission

of data not amenable for incorporation into the limited-rate PCM telemetry

data stream. The data to be transmitted via FM include television digital

data from the main engines during launch, wideband payload data, or digital

data from the PR or the API. The characteristics of the data and the per-

formance specifications for theFM-SP and the FM transmitter are presented

in Table 5.

{

3
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Table 5.	 S-Band FM Performance Specifications

FM Signal Processor

TV Channel Input EIA TV Standard RS 170

TV Channel Gain 19 dB ±0.8 dB to -0.25 dB

TV Channel Dynamic Ravage 51 dB -0.25 dB

Frequency Response ±0.25 dB DC to 4.5 MHz
i	 and Phase Ripple ±1.00

CCIR K Factor <2%

Main Engine

Data in 3 Channels 60 kbps BPL

Subcarrier Frequenc -s 576 kHz, 768 kHz, 1024 kHz

Subcarrier Modulation ±180° at ±15°

Analog Data Bandwidth 300 Hz to 4 MHz

Wideband Digital Data Rate 200 bps to 5 Mbps NRZ, or
200 bps to 2 Mbps Manchester Coded

Recorded Data - 2 Channels
Data Rate 25.5 kbps to 1024 kbps'

Narrowband DOD Digital Data Rate 250 bps to 256 kbps	
is

Input Common Mode 'Voltage
1V max

(DC to 2 MHz)

FM Transmitter

Frequency 2250.0 MHz ±0.003%

Output Power (into 1.5:1	 load) 1OW min, 15W max

Deviation Sensitivity (for
IMHz/V peak ±10%

deviation up to ±4.5 MHz peak)

Frequency Response ±1 dB DC to 5.0 MHz

`	 Incidental AM 5% max over input range

k	 Incidental	 PM <5 kHz RMS over modulation BW

Intermodulation Distortion >40 dB with frequency deviation
(2-tone equal amplitude) ±1 MHz

f



ij

r

131

Conditioning and multiplexing for FM transmission occur in t"

n °

	

	
Fhi-SP as shown in Figure 37. Video and wideband digital and analog

signals are routed to the FM transmitter with only matching and filter-

ing, but narrowband digital engine data are placed on subcarriers at

576, 768, and 1024 kHz.

The FM transmitter operates at 2250 MHz with an output power of

10W. Both baseband and RF filtering are provided to reduce out-of-channel

interference to the PM and payload receivers. The nominal RF bandwidth

is 10 MHz.

To further identify the interface between the payload system

(i.e., the API and PR) and the FM-SP, Table 6 presents the requirements'

on the input signals to the FM-SP. As additional information concerning
the processing of the data ., Table 6 also presents the characteristics of

the data signals output to the FM transmitter. Corresponding to each

type of input signal, the signal source (i.e., API or PR) is identified.

The signal type is either digital or analog with the digital data further

specified by the type of data coding. Note that, for the NASA wideband

payload data, the data coding can be either Manchester II (biphase-L) or

NRZ-L, but the Manchester coded data is limited to data rates less than

2 Mbps rather than 5 Mbps for NRZ-L coded data. The signal level voltages

are all peak-to-peak (p/p) and line -to-line for differential coupling and

line-to-common for single-ended , c.oupling. The impedance for all the

signals is 75 ohms ±10%, except the recorded data from the PR which is

71 ohms x-10%. The rise and fall times for the digital data are also

presented in Table 6. It is desirable to keep the rise and fall times

less than 10% but, in some cases, absolute times are specified which deter-

mine the type of output drivers required at the PR, API and payload. Note
that there is an additional specification of ±2% data asymmetry and ±0.1%

bit jitter on the PR output signal to reduce the degradation associated

with these types of signal distortions. The output of the FM-SP for the

PR signal has a specification of ±0.25% bit j i tter which is expected due

to the multiplication of the jitter through the FM-SP buffering. Actually,

each of the input signals to the FM-SP should have these specifications,	 1

but typically these are not difficult specifications to meet except from

tape recorders.

1
1
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Table 6. Input and Output Signal Characteristics of FM-SP for Payload Data

Signal Signal
Signal Type Data Coding Data Rate Level Rise/Fall Time Cou ling Impedance

INPUT SIGNALS

Recorded Data Digital Manchester II 22.5 kbps (min) 3-9V p/p <100 nsec Balanced 71 ohms
(PR) 1024 kbps (max) line/line <±2% asymmetry Differential ±10%

<0.1% bit jitter

Wideband Digital Manchester II 200 bps-2 Mbps 5V ±0.5V <50 nsec Balanced 75 ohms
Payload NRZ-L 200 bps-5 Mbps p/p Differential ±10%
(API) line/line

Wideband Analog --- 300 Hz-4 MHz 1V ±10% --- Balanced 75 ohms
Payload p/p Differential ±10%
(API) line/line

DOD Payload Digital Manchester II 250 bps -250 kbps 1V ±0.6 V <100 nsec Balanced 75 ohms
(API) or NRZ-L p/p Differential ±10%

line/line

OUTPUT SIGNALS

Recorded Data Digital Manchester II
22.5 kbps	 (min)
1024 kbps (max)

1.27V ±5%
p/p

10% of bit dura-
tion;<+0.25% bit

Single Ended 71 ohms

jitter
±10%

Wideband Digital Manchester II 200 bps-2 Mbps 4V ±5% <10% Single Ended 75 ohms
Payload NRZ-L 200 bps-5 Mbps p/p ±10%

Wideband Analog --- 300 Hz-4 MHz 4V ±15% --- Single Ended 75 ohms
Payload P/p +10%

DOD Payload Digital Manchester 11 250 bps-250 kbps 1.27V  ±5% <100 nsec Single Ended 75 ohms
or NRZ-L ±10%

w
w



{

r

134

7.3.6	 Multiplexer/Demultiplexer

The primary interface Unit between the GPC and other subsystems

is an MDM, shown in Figure 38. The MDMs act as a GPC-to-Orbiter format

conversion unit. They accept serial digital information from the GPCs

and convert or format this information into analog, discrete, or serial

digital form for transfer to Space Shuttle subsystems. The MDMs can also

receive analog, discrete, or serial digital information from the Space

Shuttle subsystems and convert and format these data into serial digital

words for transfer to the GPC. In addition, MDMs are used by the instru-

mentation subsystems, but only in a receive mode. Each MDM is controlled

through either the primary port connected to the primary serial data bus
or through the secondary port connected to the backup serial bus if failure
is encountered with the primary system. The input and output of the MDM

are via a multiplexer interface adapter (MIA).

The characteristics of the serial digital data input/output chan-

nels between the Orbiter subsystem (e.g., NSP, PSP, CIU) I/O buffer and

the MDM are shown in Figure 39. The Word and Message Discretes are in
the "0" states when the voltage level is between -0.5 V to +0.5 V and in

the "1" states when the voltage level is between +4.0 V to +6.0 V. These

discretes have differential signal termination with an impedance of 71

±7 ohms and a rise and fall time between 10 and 90 percent of 100 to

250 nsec.

When the Word Discrete is switched to a logical 1" state, the

Orbiter subsystem is enabled to transmit individual words to the MDM.

Figures 40 through 42 present the format for individual words to the

MDM'. Figure 40 illustrates the overall data format and shows the various

parts ofthe MDM word. Figure 41 presents the specifications for the

data coding. Note that the burst data rate to the MDM is 1 Mbps. The

first three bits of each MDM word are used for word synchronization and

are different from the normal Manchester coded bits. Figure 42 presents
the specifications for the nonvalid Manchester code used for word
synchronization.

When the Message Discrete is switched to a logical "1" state, the

Orbiter subsystem is initiated to transfer multiple words under the con-

trol of the Word Discrete beginning with the first word.. Figure 43 pre-

sents the specifications for the Message Discrete and the relationship
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Figure 40. Serial Word Format

—s4 1 usec ±0.1% avg/word

1 I 011 1 1 1 0 1 0 1 0 I 1 I 1 L 0 1^

1 = + voltage

(I

0 = - voltage

I

L-- 1000 nsec ±5%	 At the
1000 nsec ±5%	 50%
500 nsec ±10%	 points

NOTE: Biphase Level	 (Manchester II)

"1" represented by 10	
for Data

"0" represented by 01

"1" represented by 01 	
for Data

"0", represented by 10.

r

Figure 41.	 Data Code	 .
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b9tween the Message Discrete and Word Discretes in the transfer of

multiple MOM words.

Single-Ended Discretes are also shown in Figure 39. These dis-

cretes have the same logical state specifications as Word and Message

Discretes. However, Single-Ended Discretes have rise and fall times of

20 uses (max). The power off impedance and load impedance must be

10 kohms (max) with a Tine drive capacitance of 35 pf/ft (min). The

corresponding input current is 2.5 mA in the "0" state and 1.25 mA in the

"1" state.

The characteristics of the analog interfaces with the MOM are a

voltage range of 0-5 V (peak), a source impedance of 100 ohms (max), a

load impedance of 500 kohm (min), a-load "OFF" impedance of 100 kohms

(min) and a line drive of 35 pf/ft (min). There can be only one analog

interface per return.

7.3.7	 PCM Master Unit

The block diagram of the PCMMU is presented in Figure 4 4 . Opera-

tional instrumentation (0I) sensor data (designated as downlink data) are

acquired by the PCMMU in conjunction with MDMs. The MDMs, under control

of the PCMMUs, accept, encode, and store the data in a random access mem-

ory (RAM) located within the PCMMU. The stored data are "refreshed"

(updated) periodically under the control of a preprogrammed read-only

memory. This module is known as a "fetch PROM."

GPC sensor and derived data (designated as downlist data) are

acquired by GPCs and sent by a data bus to the PCMMUs. The PCMMU provides

a unique double-buffer memory for each computer input, which allows data

reception asynchronously while synefironously outputting previously

received data. 'This guarantees the homogeneity of the data (i.e., output

data are not overlaid by incoming data). Payload data are processed

through the PCMMU in the same manner as the OI sensor data except that
'

the PCMMU interfaces with a payload data interleaver (PDI).

The 0I PCMMU, after accepting data from the MOM, computers, and

PDI, formats the data into a serial digital output stream for telemetry,

recording, and GSE. Format control is provided by the output formatter,

which is programmable and can be modified by a set of instructions from

the computers.

je



'r

141

COMPUTER DATA RAM	 TLM

CONTROL r	 -. r.-.------^ DATA

d

CONTROL FORMAT
MIAS

LOGIC 5COMPUTER ( LOGIC MEMORIES
TU
COMPUTER 15i

- - -
I
 TOGGLE

BUFFERS I PROM

I I ( I 1 1I
I

1
I

I
I
1	 I

l -- (	 178 KOPS	 ^

I 1	 I I
RAM	 I

1 84 K8P8
RAM 1

TO 01
MDM'S

AhA .._^^
01

DATA -^' L-- ---- -^_ I RAM

1 n _
T

178 KBPS
FORMATTER

TO
TO POI 4 MIA *-i -L DATA OUTPUT

. I RAM DRIVERSI
IM k8P!.

I
I

....
FORMAI II.R

I	 I

FETCH

T
.BITE

MEMORf
^.
r

rOCVER
ISU^PLr

I 4.8tl8 MHr FROM MTU
L-__ PL

FETCH TIMING 1157MHi,100Hr	 i

MEMOPt
AND 1. PPS TO OUTPUT

IDRIVER

I Figure 44. PCMMU Block Diagram	
i

ORIGINAL PAGE
O.F POOR QUALM ,r

i



7

r
142

The PCMMU has a maximum output capability of 128 kbps for purposes

of telemetry and on-board recording. The PCMMU, on command from the crew,

can send 64 kbps of information. 	 This mode is primarily used in conjunc-

tion with the low bit rate of the transmission system (S-band or Ku—band)

and the TDRSS.

Formats have been developed for the ascent phase, on-orbit phase,

entry phase, and ground checkout.	 As noted in Figure 44, one of the for-

mat memories is a 128 kbps PROM, which is a fixed format and cannot be

modified by the GPC.	 This format is used during power-up of the Orbiter

and during the ascent phase.	 A fixed format is necessary because loss of

power to the PCMMU would result in loss of information from 64/128 kbps.

RAMs (volatile memory).

7.3.8	 Payload Data Interleaver

The programmable PCMMU can be modified from one flight to the

next.	 Since the Shuttle provides transportation for many types of pay-

loads, a programmable PDI was designed to interface with the PCMMU. 	 The

PDI	 (Figure 45) can accept data simultaneously from five different

attached payloads.and an input from the PSP, then select and individually

decommutate the data for storage in a buffer memory.	 This memory is

accessible to the PCMMU, and the data are included with the Orbiter PCM

stream.	 The PDI is programmed on-board from the mass memory through the

GPC, which is used to select specific data from each payload PCM signal

and transfer them to buffer memory locations. 	 An input switch matrix

selects four of the inputs for the bit synchronizers.	 The "chain" func-

tions of bit synchronization, decommutation; and word selection are pro-

vided for up to four simultaneous PCM streams in two possible modes.

Mode 1:	 In this mode, a chain bit synchronizes, master-frame

synchronizes, minor-frame synchronizes, and word synchronizes to the

incoming data stream. 	 The word selector blocks data into proper words

for storage in the data RAM and/or toggle buffer. 	 PCM code type, bit

rate, PCM format, synchronization codes, and word selection are program-

mable under control of the decommutator format memories. 	 Two word

selection capabilities for this mode of operation are as follows:

Type I:	 The first type selects all, or a subset of, the

words in a payload PCM format minor frame (or master frame for formats

n:A
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without minor frames) for storage in the toggle buffer.

Type II: The second type of word selection is by parameter.
The specification of a parameter consists of its word location within a
minor frame, the first minor frame in which it appears, and its sample
rate. The specification is provided as part of the decommutator control

memory format load.

Mode 2: In this mode, a chain bit synchronizes to the incoming

data, blocks it into 8-bit words, blocks the 8-bit words into frames,

supplies synchronization pattern at the start of each frame, and includes

the status register as the last three 16-bit words of each frame. A homo-

geneous data set for this mode of operation is defined as all information

within this PDI-created frame. Code type, bit rate, frame length, and

synchronization pattern are programmable under control of the decommutator

format memories. The frames are supplied to the toggle buffer for storage

as homogeneous data sets. No data is supplied to the data RAM in this

mode of operation.

A status register containing the status and time for a given chain

operation is provided by the word selector to the Toggle Buffer (TB) con-

trol logic. This logic regulates access to and from the half buffers by

the word selectors and the data buses. All requests for TB data by the.
data ports are processed through the Fetch Pointer Memory (FPM) and the

Toggle Buffer Identifier (TBI). The TB control logic also partitions

data from the word selector into homogeneous data sets for access by the

data bus ports.
T.hle FPM is used to identify which TB is to be accessed by a data

bus port. It also allows access to any location in the data RAM by any

of the PDI data bus ports at any time. FPM control logic routes all

requests for TB data to the location in the FPM identified by the data
bus command word. It further provides for loading and reading of formats

to and from the FPM at any time by the data bus ports.

A data RAM for storage of data from the word selector by param-

eter is provided. The data RAM control logic steers data provided by the

word selector into addresses in the data RAM specified by the decommutator

control memory.

There are three data bus ports for interface with the Orbiter GPC

that have read and write access into the switch matrix, the decommutator

control memory, the FPM, the PDI, and the data RAM.
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An IRIG "B" receiver/decoder accepts an..IRI.G "B" code from an

external source, decodes time, and supplies it to the four status

registers.

7.3.9	 Payload Experiment Recorder

' The data recording system uses wideband digital and analog mag-

netic tape recorders to record and reproduce digital and analog signals.

The magnetic tape recorder data storage system consists of two components.

The first component comprises the multitrack coaxial reed--to-reel tape

transport and its associated electronics.	 The tape transport features

negator spring tension and contains a minimum of 2400 usable feet of

0.5-inch by 1-mil magnetized tape.	 The transport can store a minimum

of 3.4x 109 bits of digital data. 	 The second component contains addi-

tional data conditioning circuitry and all other control logic and asso-

ciated electronics.

Payload experiment data recording is provided via the payload

station panel.	 Predetermined patch panel wiring permits digital data

` recording in either parallel	 (up to 14 tracks) or a combination of

parallel-serial. 	 Data rates from 25.5 kbps (lowest rate for a tape

speed of 6 inches per second [ips]) to 1024 kbps (highest rate for a

tape speed of 120 ips) can be selected from four tape speeds provided

by premission wiring of recorder program plugs.

Analog data can be recorded on up to 14 tracks in parallel with

frequencies from 1.9 kHz (lowest frequency for 6 ips tape speed) to

1.6 MHz (highest frequency for 120 ips tape speed) by premission pro-

gram wiring.	 The basic recorder has the following record/playback

capabilities:

Data Range	 Frequency Range	 Selectable Tape Speed	 Time Per Track
(kbps)	 (kHz)	 Gips)	 (min)

f 64-128	 1.9-250	 15	 32

128-256	 3.8-500	 30	 16

256-512	 7.5-1000	 60	 8

512-1024	 1.5-1600	 120	 4
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7.4	 Payload Interface Issues

After reviewing the interfaces between the payload equipment and
ti

the Orbiter avionic equipment, a number of areas of concern were found.

The following sections identify the major interface issues.

7.4.1	 Payload Interrogator and Payload Signal Processor Interface

The wideband signal delivered to the PSP from the PI is to be reg-

ulated and held constant to a 2V RMS value. The current Rockwell specifi-

cation adds, in addition, that a 6V peak-to-peak (3V zero-to-peak) linear

transfer capability{ shall exist, outside of which amplitude clipping will

take place. This means that any waveform having a peak-to-RMS ratio

larger than 1.5 will experience amplitude limiting and will cause SNR

performance loss.

Table 7 lists the peak-to-RMS values for typical complex waveforms

that may be present at the PI/PSP interface. As can be seen, only the

first two entries will be transferred without clipping. Since, for all

possible modulations, the output of the PI for weak received signals

k -100 dBm) is essentially Gaussian in character, the output will be

clipped.

Table 7. Peak-to-RMS Values of Various Waveforms

Waveform Type	 Peak/RMS Value

,.x
Square-Wave, Binary Data 	 1.0

Single Sinewave Subcarrier	 1.4

Two Equal Amplitude Incoherent Subcarriers 	 2.0

Three Equal Amplitude Incoherent Subcarriers 	 2.5

Four Equal Amplitude Incoherent Subcarriers 	 2.8

Gaussian Noise	 3.0

Five Equal Amplitude Incoherent Subcarriers 	 3.2

a

As it is undesirable to clip Gaussian noise peaks below the 3a

level, a 12V peak-to-peak output amplifier range is required. This caps-	 b

bility will also accommodate up to four simultaneous subcarriers without

#:
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clipping and five subcarriers with only occasional clipping.	 It is

'.	 recommended, therefore, that the requirement be changed to provide a 12V

peak-to-peak linear transfer capability.

The PI receiver PLL can be viewed as a highpass filter insofar as

the demodulation of the sidebands is concerned. 	 This can be particularly

important for direct carrier (no subcarrier) data modulations of the NRZ

form.	 Such conditions could exist for the nonstandard bent-pipe link.

The requirement is that the highpass characteristics do not adversely

affect the demodulated data waveform by filtering out significant wave-

form frequency components, nor should the data waveform introduce large

tracking jitter within the PLL. 	 This requirement must, therefore, impose

specifications on minimum NRZ data rate and the maximum period of transi-

tionless bits.

It is also desirable that the video amplifierwhich provides the

PI receiver wideband output signal to the KuSP have a DC blocking capaci-

for between its output and the KuSP input.	 Requirement for this stems

from the fact that all the circuits within the KuSP, including thew of

the FM transmitter, are direct coupled. 	 Thus, any direct voltage offsets
3

arising within the PI receiver output circuits could, without the use of

AC coupling, "detune" the FM transmitter.	 Given that an output coupling

capacitor is to be used, 	 it is also desirable to utilize additional 	 capac-

itive coupling within the PI circuits themselves.	 The overall net effect

is to place a two-pole highpass filter between the PI receiver's wideband

phase demodulator and the input to the KuSP.

Subsection 5.4.	 of [28] contains an analysis which establishes

theroper data stream and highpass filter specifications. 	 Direct modu-p	9

lation of the carrier by NRZ data should not introduce more than 10° RMS

phase jitter in the PI receiver PLL, and the maximum phase reference slew-

ing due to periods of transitionless data should not exceed 18°. 	 For the

TRW maximum PLL noise bandwidth design value of 1460 Hz, the data stream

restrictions are:

(1)	 Rb > 185 kbps, and

(2)	 Maximum string of ne transition bits _ 30 for the bit rate
of 185 kbps.

Additionally, the HPF following the PLL should not introduce any more than

-0.1 dB of data power loss; therefore, the 3 dB frequency of each of the

t.
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two cascade HPFs should be less than 678 Hz. Axiomatix recommends that

each of the HPF sections have a 3 dB frequency of 200 Hz.

7.4.2	 Payload Interrogator and Ku-Band Signal Processor Interface

As discussed in Subsection 7.4.1, the PI employs an RMS regulator

as an AGC on the wideband demodulated signal. Originally, this RMS scaled

signal was to be output in like manner to the PSP, CIU, and KuSP. This

meant that the drive signal into the Ku-band frequency modulator would

always be set in proportion to its RMS value, irrespective of its wave-

form. Axiomatix proceeded to analyze the implications of using the RMS

regulating loop for FM bent-pipe signals. Analysis which fully accounted

for both noise sources in the Ku-band bent-pipe link model showed that a

peak-type regulator would outperform the RMS-type regulator under all

conditions and would provide a minimum overall link improvement of 1.1 dB

for high data rate NRZ data. Significantly larger improvements can be

expected for other qualifications.

Following several round-table technical discussions between NASA,

Axiomatix and Rockwell personnel, it was concluded that any necessary sig-

nal warform conditioning required to optimize the Ku-band FM bent-pipe

link i^ properly a function of the KuSP rather than the PI. This con-

clusioi was based primarily upon the fact that attached, as well as

detached, payload signals must be regulated and properly scaled within

the KuSP. Since the PI is not employed, in the attached payload configu-

ration, consigning such regulation to the PI for its signals would also

mean that every payload would have to provide similar capability at the

payload/KuSP interface. This burden, it was concluded, should not be

placed on the user, and it therefore became universally agreed that such

regulation and its necessary circuits should be incorporated into the

KuSP. The location of the regulator in the wideband FM channel is shown

as part of the selector on Figure 36. The nature of such regulation capa-

bility, however, was left open, and Axiomatix was requested by Rockwell

to further review the requirements and necessary circuit designs and

make recommendations. In order to avoid potential problems with tandem

regulator circuits (one in the PI and the other in the KuSP), TRW was

requested to review the PI receiver wideband output design so that the

signal interface to the KuSP circumvents the RMS AGC circuits. The RMS

regulator will therefore be used only for the PSP and CIU interfaces.

t 1
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The conclusion reached by Axiomatix is that a peak-to-peak type

of regulator always gives equal or superior performance compared to an

RMS type regulator for all of the types of waveforms and SNR conditions>

that were considered. One expressed concern over a peak regulator is

that such a regulating loop may be complex to implement and that proper

response time/conditions may be difficult to achieve. Axiomatix has

therefore initiated a program to assess what is functionally required of

a signal peak regulating loop.

7.4.3

	

	 Commonality of Payload Signal Processor and Communication
Interface Unit Functions

Functional descriptions of the PSP and CIU appear in subsections_

7.3.2 and 7.3.3, respectively. As can be seen, each unit interfaces with

essentially the same avionic equipment in nearly identical fashion, and

internally, very similar (and some identical) functions are performed.

A review in August 1978 of the CIU interface requirements dis-

closed several CIU specification incompatibilities with respect to the
CIU/MDM interface. Digital command data buffering and decoding by the

CIU of burst inputs from the MDM proved to be the central problem. It

was then suggested that, since the PSP is already designed to perform

these functions, a simpler interface could be obtained between the CIU

and the PSP, rather than the CIU and the MDM, and that CIU design would

be simplified.

Axiomatix believes that such a change of the interface is reason-

able and desirable, especially since TRW is the design and production
contractor for both units. Whether this can be accomplished withoutsig-

nificantly impacting the cost and schedule of either or both units is not

clear. Some formal study by TRW should make such an assessment.
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